Selected ion flow tube mass spectrometry (SIFT-MS) is a new analytical technique for the real-time quantification of several trace gases simultaneously in air and breath. It relies on chemical ionization of the trace gas molecules in air/breath samples introduced into helium carrier gas using H(3)O(+), NO(+), and O(2) (+.) precursor ions. Reactions between the precursor ions and trace gas molecules proceed for an accurately defined time, the precursor and product ions being detected and counted by a downstream mass spectrometer, thus effecting quantification. Absolute concentrations of trace gases in single breath exhalation can be determined by SIFT-MS down to ppb levels, obviating sample collection and calibration. Illustrative examples of SIFT-MS studies include (i) analysis of gases from combustion engines, animals and their waste, and food; (ii) breath and urinary headspace studies of metabolites, ethanol metabolism, elevated acetone during ovulation, and exogenous compounds; and (iii) urinary infection and the presence of tumors, the influence of dialysis on breath ammonia, acetone, and isoprene, and acetaldehyde released by cancer cells in vitro. Flowing afterglow mass spectrometry (FA-MS) is briefly described, which allows on-line quantification of deuterium in breath water vapor.
Selected ion flow tube mass spectrometry, SIFT-MS, has been used to monitor the volatile compounds in the exhaled breath of 30 volunteers (19 males, 11 females) over a 6 month period. Volunteers provided breath samples each week between 8:45 am and 1 pm (before lunch), and the concentrations of several trace compounds were obtained. In this paper the focus is on ammonia, acetone and propanol. It was found that the concentration distributions of these compounds in breath were close to log-normal. The median ammonia level estimated as a geometric mean for all samples was 833 parts per billion (ppb) with a multiplicative standard deviation of 1.62, the values ranging from 248 to 2935 ppb. Breath ammonia clearly increased with increasing age in this volunteer cohort. The geometric mean acetone level for all samples was 477 parts per billion (ppb) with a multiplicative standard deviation of 1.58, the values ranging from 148 to 2744 ppb. The median propanol level for all samples was 18 ppb, the values ranging from 0 to 135 ppb. A weak but significant correlation between breath propanol and acetone levels is apparent in the data. The findings indicate the potential value of SIFT-MS as a non-invasive breath analysis technique for investigating volatile compounds in human health and in the diseased state.
The development of selected ion flow tube mass spectrometry, SIFT-MS, is described from its inception as the modified very large SIFT instruments used to demonstrate the feasibility of SIFT-MS as an analytical technique, towards the smaller but bulky transportable instruments and finally to the current smallest Profile 3 instruments that have been located in various places, including hospitals and schools to obtain on-line breath analyses. The essential physics and engineering principles are discussed, which must be appreciated to design and construct a SIFT-MS instrument. The versatility and sensitivity of the Profile 3 instrument is illustrated by typical mass spectra obtained using the three precursor ions H(3)O(+), NO(+) and O(2)(+)·, and the need to account for differential ionic diffusion and mass discrimination in the analytical algorithms is emphasized to obtain accurate trace gas analyses. The performance of the Profile 3 instrument is illustrated by the results of several pilot studies, including (i) on-line real time quantification of several breath metabolites for cohorts of healthy adults and children, which have provided representative concentration/population distributions, and the comparative analyses of breath exhaled via the mouth and nose that identify systemic and orally-generated compounds, (ii) the enhancement of breath metabolites by drug ingestion, (iii) the identification of HCN as a marker of Pseudomonas colonization of the airways and (iv) emission of volatile compounds from urine, especially ketone bodies, and from skin. Some very recent developments are discussed, including the quantification of carbon dioxide in breath and the combination of SIFT-MS with GC and ATD, and their significance. Finally, prospects for future SIFT-MS developments are alluded to.
Analyses have been performed, using on-line selected ion flow tube mass spectrometry (SIFT-MS), of the breath of three healthy volunteers, as exhaled via the mouth and the nose and also of the air in the oral cavity during breath hold, each morning over a period of one month. Nine trace compounds have been quantified and concentration distributions have been constructed. Of these compounds, the levels of acetone, methanol and isoprene are the same in the mouth-exhaled and the nose-exhaled breath; hence, we deduce that these compounds are totally systemic. The levels of ammonia, ethanol and hydrogen cyanide are much lower in the nose-exhaled breath than in the mouth-exhaled breath and highest in the oral cavity, indicating that these compounds are largely generated in the mouth with little being released at the alveolar interface. Using the same ideas, both the low levels of propanol and acetaldehyde in mouth-exhaled breath appear to have both oral and systemic components. Formaldehyde is at levels in mouth- and nose-exhaled breath and the oral cavity that are lower than that of the ambient air and so its origin is difficult to ascertain, but it appears to be partially systemic. These results indicate that serious contamination of alveolar breath exhaled via the mouth can occur and if breath analysis is to be used to diagnose metabolic disease then analyses should be carried out of both mouth- and nose-exhaled breath to identify the major sources of particular trace compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.