Diffraction-unlimited resolution provided by Stimulated Emission Depletion (STED) microscopy allows for imaging cellular processes in living cells that are not visible by conventional microscopy. However, it has so far not been possible to study dynamic nanoscale interactions because multicolor live cell STED microscopy has yet to be demonstrated and suitable labeling technologies and protocols are lacking. Here we report the first realization of two-color STED imaging in living cells. Using improved SNAPf and CLIPf technologies to label epidermal growth factor (EGF) and EGF receptor (EGFR), we report resolutions of 78 nm and 82 nm for 22 sequential two-color scans in living cells.
Detailed studies on the live cell uptake properties of a dinuclear membrane-permeable Ru cell probe show that, at low concentrations, the complex localizes and images mitochondria. At concentrations above ∼20 μM, the complex images nuclear DNA. Because the complex is extremely photostable, has a large Stokes shift, and displays intrinsic subcellular targeting, its compatibility with super-resolution techniques was investigated. It was found to be very well suited to image mitochondria and nuclear chromatin in two color, 2C-SIM, and STED and 3D-STED, both in fixed and live cells. In particular, due to its vastly improved photostability compared to that of conventional SR probes, it can provide images of nuclear DNA at unprecedented resolution.
A core prediction of the vesicular transport model is that COPI vesicles are responsible for trafficking anterograde cargoes forward. In this study, we test this prediction by examining the properties and requirements of inter-Golgi transport within fused cells, which requires mobile carriers in order for exchange of constituents to occur. We report that both small soluble and membrane-bound secretory cargo and exogenous Golgi resident glycosyl-transferases are exchanged between separated Golgi. Large soluble aggregates, which traverse individual stacks, do not transfer between Golgi, implying that small cargoes (which can fit in a typical transport vesicle) are transported by a different mechanism. Super-resolution microscopy reveals that the carriers of both anterograde and retrograde cargoes are the size of COPI vesicles, contain coatomer, and functionally require ARF1 and coatomer for transport. The data suggest that COPI vesicles traffic both small secretory cargo and steady-state Golgi resident enzymes among stacked cisternae that are stationary.DOI: http://dx.doi.org/10.7554/eLife.01296.001
How local interactions of actin regulators yield large-scale organization of cell shape and movement is not well understood. Here we investigate how the WAVE complex organizes sheet-like lamellipodia. Using super-resolution microscopy, we find that the WAVE complex forms actin-independent 230-nm-wide rings that localize to regions of saddle membrane curvature. This pattern of enrichment could explain several emergent cell behaviors, such as expanding and self-straightening lamellipodia and the ability of endothelial cells to recognize and seal transcellular holes. The WAVE complex recruits IRSp53 to sites of saddle curvature but does not depend on IRSp53 for its own localization. Although the WAVE complex stimulates actin nucleation via the Arp2/3 complex, sheet-like protrusions are still observed in ARP2-null, but not WAVE complex-null, cells. Therefore, the WAVE complex has additional roles in cell morphogenesis beyond Arp2/3 complex activation. Our work defines organizing principles of the WAVE complex lamellipodial template and suggests how feedback between cell shape and actin regulators instructs cell morphogenesis.
How local interactions of actin regulators yield large-scale organization of cell shape and movement is not well understood. For example, why does the WAVE complex build lamellipodia, the broad sheet-like protrusions that power cell migration, whereas the homologous actin regulator N-WASP forms spiky finger-like actin networks? N-WASP is known to oligomerize into focal condensates that generate an actin finger. In contrast, the WAVE complex exhibits the linear distribution needed to generate an actin sheet. This linear organization of the WAVE complex could either arise from interactions with the actin cytoskeleton or could represent an ability of the complex to self-organize into a linear template. Using super-resolution microscopy, we find that the WAVE complex forms higher-order linear oligomers that curve into 270 nanometer-wide ring structures in the absence of actin polymer. These rings localize to the necks of membrane invaginations, which display saddle point geometries with positive curvature in one axis and negative curvature in the orthogonal axis. To investigate the molecular mechanism of saddle curvature enrichment, we show that the WAVE complex and IRSp53, a membrane curvature-sensitive protein, collaborate to recognize saddle curvature that IRSp53 cannot sense alone. This saddle preference for the WAVE complex could explain emergent cell behaviors, such as expanding and self-straightening lamellipodia as well as the ability of endothelial cells to recognize and seal transcellular holes. Our work highlights how partnering protein interactions enable complex shape sensing and how feedback between cell shape and actin regulators yields self-organized cell morphogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.