The chemical strategies by which parasites manage to break into the social fortresses of ants offer a fascinating theme in chemical ecology. Semiochemicals used for interindividual nestmate recognition are also involved in the mechanisms of tolerance and association between the species, and social parasites exploit these mechanisms. The obligate parasites are odorless ("chemical insignificance") at the time of usurpation, like all other callow ants, and this "invisibility" enables their entry into the host colony. By chemical mimicry (sensu lato), they later integrate the gestalt odor of this colony ("chemical integration"). We hypothesize that host and parasite are likely to be related chemically, thereby facilitating the necessary mimicry to permit bypassing the colony odor barrier. We also review the plethora of chemical weapons used by social parasites (propaganda, appeasement, and/or repellent substances), particularly during the usurpation period, when the young mated parasite queen synthesizes these chemicals before usurpation and ceases such biosynthesis afterwards. We discuss evolutionary trends that may have led to social parasitism, focusing on the question of whether slave-making ants and their host species are expected to engage in a coevolutionary arms race.
A major evolutionary transition to eusociality with reproductive division of labor between queens and workers has arisen independently at least 10 times in the ants, bees, and wasps. Pheromones produced by queens are thought to play a key role in regulating this complex social system, but their evolutionary history remains unknown. Here, we identify the first sterility-inducing queen pheromones in a wasp, bumblebee, and desert ant and synthesize existing data on compounds that characterize female fecundity in 64 species of social insects. Our results show that queen pheromones are strikingly conserved across at least three independent origins of eusociality, with wasps, ants, and some bees all appearing to use nonvolatile, saturated hydrocarbons to advertise fecundity and/or suppress worker reproduction. These results suggest that queen pheromones evolved from conserved signals of solitary ancestors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.