The genus Caulerpa consists of about 75 species of tropical to subtropical siphonous green algae. To better understand the evolutionary history of the genus, a molecular phylogeny was inferred from chloroplast tufA sequences of 23 taxa. A sequence of Caulerpella ambigua was included as a potential outgroup. Results reveal that the latter taxon is, indeed, sister to all ingroup sequences. Caulerpa itself consists of a series of relatively ancient and species‐poor lineages and a relatively modern and rapidly diversifying clade, containing most of the diversity. The molecular phylogeny conflicts with the intrageneric sectional classification based on morphological characters and an evolutionary scheme based on chloroplast ultrastructure. High bootstrap values support monophyly of C. mexicana, C. sertularioides, C. taxifolia, C. webbiana, and C. prolifera, whereas most other Caulerpa species show para‐ or polyphyly.
Numerous attempts to capture the morphological variability of the genus Caulerpa have resulted in an unstable classification of numerous varieties and formae. In the present study we attempted to test taxon boundaries by investigating morphological and genetic variation within and between seven taxa of Caulerpa, supposedly belonging to four species, sampled at different sites in a Philippine reef system. Using both field and culture observations, we described the relation between the variability of a set of morphological characters and ecological parameters, such as wave exposure, light intensity, and substrate type. Statistical analyses showed that the limits between two (out of three) ecads of the C. racemosa (Forsskål) J. Agardh complex were obscured by the presence of morphological plasticity. Other studied taxa of Caulerpa (i.e. C. cupressoides [Vahl] C. Agardh, C. serrulata [Forsskål] J. Agardh, and two formae of C. sertularioides [S. Gmelin] Howe) could be grouped based on morphology despite the presence of morphological plasticity. Our results indicated a strong association between light intensity and several quantitative morphological variables. Genetic diversity of these taxa was assessed by partial sequencing chloroplast rbcL and tufA genes and the ycf10-chlB chloroplast spacer. In all phylogenetic analyses, C. serrulata, C. cupressoides, C. sertularioides, and the three ecads of C. racemosa emerged as distinct genetic units. Despite the presence of morphological plasticity and morphological convergence, a subset of morphological characters traditionally used in taxonomic delimitation still had sufficient discriminative power to recognize the terminal phylogenetic clades.
An invasive, cold-tolerant strain of the tropical green alga Caulerpa taxifolia was introduced recently in the Mediterranean Sea and along the Californian coast. We screened 50 aquarium and open-sea C. taxifolia specimens for the presence ⁄ absence of an intron located in the rbcL gene of chloroplast DNA. We also reanalysed a total of 229 sequences of the Internal Transcribed Spacer (ITS) of ribosomal DNA, combining previously published sequences from different studies with 68 new sequences to complement rbcL data. The introduced Mediterranean strain was found to be characterized by the absence of the rbcL intron and by the occurrence of a particular monomorphic ITS type. A PCR assay based on rbcL gene was developed to detect new introductions of the invasive strain of C. taxifolia. This rapid and inexpensive test could be useful to assist environment managers in the preservation of coastal marine ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.