Abstract. We mapped, sampled, and quantified gas emissions at the continental margin west of Svalbard during R/V Heincke cruise He-387 in late summer 2012. Hydroacoustic mapping revealed that gas emissions were not limited to a zone just above 396 m water depth. Flares from this depth have gained significant attention in the scientific community in recent years because they may be caused by bottom-water warming-induced hydrate dissolution in the course of global warming and/or by recurring seasonal hydrate formation and decay. We found that gas emissions occurred widespread between about 80 and 415 m water depth, which indicates that hydrate dissolution might only be one of several triggers for active hydrocarbon seepage in that area. Gas emissions were remarkably intensive at the main ridge of the Forlandet moraine complex in 80 to 90 m water depths, and may be related to thawing permafrost.Focused seafloor investigations were performed with the remotely operated vehicle (ROV) "Cherokee". Geochemical analyses of gas bubbles sampled at about 240 m water depth as well as at the 396 m gas emission sites revealed that the vent gas is primarily composed of methane (> 99.70 %) of microbial origin (average δ 13 C = −55.7 ‰ V-PDB).Estimates of the regional gas bubble flux from the seafloor to the water column in the area of possible hydrate decomposition were achieved by combining flare mapping using multibeam and single-beam echosounder data, bubble stream mapping using a ROV-mounted horizontally looking sonar, and quantification of individual bubble streams using ROV imagery and bubble counting. We estimated that about 53 × 10 6 mol methane were annually emitted at the two areas and allow for a large range of uncertainty due to our method (9 to 118 × 10 6 mol yr −1 ). First, these amounts show that gas emissions at the continental margin west of Svalbard were on the same order of magnitude as bubble emissions at other geological settings; second, they may be used to calibrate models predicting hydrate dissolution at present and in the future; and third, they may serve as a baseline (year 2012) estimate of the bubble flux that will potentially increase in the future due to ever-increasing global-warming-induced bottom water warming and hydrate dissociation.
Numerous articles have recently reported on gas seepage offshore Svalbard, because the gas emission from these Arctic sediments was thought to result from gas hydrate dissociation, possibly triggered by anthropogenic ocean warming. We report on findings of a much broader seepage area, extending from 74° to 79°, where more than a thousand gas discharge sites were imaged as acoustic flares. The gas discharge occurs in water depths at and shallower than the upper edge of the gas hydrate stability zone and generates a dissolved methane plume that is hundreds of kilometer in length. Data collected in the summer of 2015 revealed that 0.02-7.7% of the dissolved methane was aerobically oxidized by microbes and a minor fraction (0.07%) was transferred to the atmosphere during periods of low wind speeds. Most flares were detected in the vicinity of the Hornsund Fracture Zone, leading us to postulate that the gas ascends along this fracture zone. The methane discharges on bathymetric highs characterized by sonic hard grounds, whereas glaciomarine and Holocene sediments in the troughs apparently limit seepage. The large scale seepage reported here is not caused by anthropogenic warming.Methane is, after water vapor and CO 2 , the most abundant greenhouse gas on Earth. When averaged over a 100 yr timescale, the warming effect of methane per unit mass is 28 times higher than that of CO 2 1 . Methane is produced in oceanic sediments either by methanogens at temperatures typically below ~80 °C, or through the breakdown of organic molecules at higher temperatures 2,3 . Buoyancy and pressure gradients can drive gas advection to shallower sediments where methane can be consumed via anaerobic oxidation of methane (AOM) 4 at the sulfate-methane transition zone and aerobic methane oxidation at the sediment surface 5 . Methane can also be sequestered within a cage of water molecules, in a gas hydrate structure, stable under the low temperature and high pressure conditions that define the gas hydrate stability zone 6 . If the upward methane flux is not fully exhausted by these processes, methane is emitted to the ocean either dissolved in the venting fluids or, in case of over-saturation, as gas bubbles 7 . As the bubbles ascend through the water column, a fraction of the methane gas dissolves 8 , generating patches of high methane concentration 9 . When the gas discharge is persistent and vigorous, it leads to the formation of large dissolved methane plumes. The dissolved methane is diluted by mixing with the surrounding ocean water and it is further oxidized by aerobic methanotrophs. Only in cases where dissolved methane reaches the surface-mixed layer in concentrations above saturation, can it be transferred to the atmosphere via sea-air gas exchange 10 . At present, the oceanic methane source to the atmosphere is very small (2-10%) 11 , as it is limited to emissions from vigorous and shallow seeps (<100 m) 1,7,8 . There is, however, an ongoing controversy regarding the methane discharge from sediments during warming events througho...
Twelve submarine mud volcanoes (MV) in the Kumano forearc basin within the Nankai Trough subduction zone were investigated for hydrocarbon origins and fluid dynamics. Gas hydrates diagnostic for methane concentrations exceeding solubilities were recovered from MVs 2, 4, 5, and 10. Molecular ratios (C 1 /C 2 < 250) and stable carbon isotopic compositions (d 13 C-CH 4 >240& V-PDB) indicate that hydratebound hydrocarbons (HCs) at MVs 2, 4, and 10 are derived from thermal cracking of organic matter. Considering thermal gradients at the nearby IODP Sites C0009 and C0002, the likely formation depth of such HCs ranges between 2300 and 4300 m below seafloor (mbsf). With respect to basin sediment thickness and the minimum distance to the top of the plate boundary thrust we propose that the majority of HCs fueling the MVs is derived from sediments of the Cretaceous to Tertiary Shimanto belt below Pliocene/Pleistocene to recent basin sediments. Considering their sizes and appearances hydrates are suggested to be relicts of higher MV activity in the past, although the sporadic presence of vesicomyid clams at MV 2 showed that fluid migration is sufficient to nourish chemosynthesis-based organisms in places. Distributions of dissolved methane at MVs 3, 4, 5, and 8 pointed at fluid supply through one or few MV conduits and effective methane oxidation in the immediate subsurface. The aged nature of the hydrates suggests that the major portion of methane immediately below the top of the methane-containing sediment interval is fueled by current hydrate dissolution rather than active migration from greater depth.
25A new extensive submarine cold-seep area was discovered on the northern shelf of South Georgia during R/V Polarstern cruise ANT-XXIX/4 in spring 2013. Hydroacoustic surveys and video-based sea floor observations documented the presence of 133 individual gas bubble emissions, which were restricted to glacially-formed fjords and troughs. Effective methane transport from these emissions into the hydrosphere was proven by relative enrichments of dissolved methane in near-bottom 30 waters. Stable carbon isotopic signatures of the methane pointed to a predominant microbial origin.Although known from many continental margins in the world's oceans, this is the first report of an active area of methane seepage in the Southern Ocean. Our finding of substantial methane emission related to a trough and fjord system, a topographical setting that exists commonly in glaciallyaffected areas, opens up the possibility that methane seepage is a more widespread phenomenon in 35 polar and sub-polar regions than previously thought.
In this study, we present the first experimental results for stable barium (Ba) isotope ((137)Ba/(134)Ba) fractionation during low-temperature formation of the anhydrous double carbonate BaMn[CO(3)](2). This investigation is part of an ongoing work on Ba fractionation in the natural barium cycle. Precipitation at a temperature of 21±1°C leads to an enrichment of the lighter Ba isotope described by an enrichment factor of-0.11±0.06‰ in the double carbonate than in an aqueous barium-manganese(II) chloride/sodium bicarbonate solution, which is within the range of previous reports for synthetic pure BaCO (3) (witherite) formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.