Significance The sudden explosion of seed pods in popping cress ( Cardamine hirsuta ) takes less than 3 ms to accelerate seeds away from the plant. This explosive mechanism relies on polar deposition of the cell-wall polymer lignin. To investigate the genetic basis for polar lignin deposition, we conducted a mutant screen and identified SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 7 (SPL7)—a transcriptional regulator of copper homeostasis. We discovered three multicopper laccases, LAC4, 11, and 17, that precisely colocalize with, and are required for, the polar deposition of lignin in explosive seed pods. Activity of these three laccases depends on SPL7 to acclimate to copper deficiency. Our findings demonstrate how mineral nutrition is integrated with polar lignin deposition to facilitate dispersal.
Stability is a desirable property for agricultural microbiomes, but there is a poor understanding of the mechanisms that mediate microbial community stability. Recently, a representative bacterial synthetic community from maize roots has been proposed as a model system to study microbiome stability (Niu 2017, PNAS, 114:E2450). This SynCom assembles stably when all seven members are present, but community diversity collapses without the keystone E. cloacae strain. The aim of this study was to assess the role of metabolites for the stability of this SynCom, by defining the metabolic niches occupied by each strain, as well as their cross-feeding phenotypes and B-vitamin dependencies. We show that the individual member strains occupy complementary metabolic niches, measured by the depletion of distinct metabolites in exometabolomic experiments, as well as contrasting growth phenotypes on diverse carbon substrates. Minimal medium experiments show that the established seven-member community comprises a mixture of prototrophic and auxotrophic strains. Correspondingly, experimental cross-feeding phenotypes showed that spent media harvested from the prototrophic strains can sustain growth of two auxotrophs. We suggest that the metabolic mechanisms exhibited by this SynCom could serve as design principles to inform the rational assembly of stable plant-associated microbial communities.
Exploding seed pods evolved in the Arabidopsis relative, Cardamine hirsuta, via morphomechanical innovations that allow the storage and rapid release of elastic energy. Asymmetric lignin deposition within endocarpb cell walls is one such innovation that is required for explosive seed dispersal and evolved in association with the trait. However, the genetic control of this novel lignin pattern is unknown. Here, we identify three lignin-polymerizing laccases, LAC4, 11 and 17, that precisely co-localize with, and are redundantly required for, asymmetric lignification of endocarpb cells. By screening for C. hirsuta mutants with less lignified fruit valves, we found that loss of function of the transcription factor gene SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 7 (SPL7) caused a reduction in endocarpb cell wall lignification and a consequent reduction in seed dispersal range. SPL7 is a conserved regulator of copper homeostasis and is both necessary and sufficient for copper to accumulate in the fruit. Laccases are copper-requiring enzymes. We discovered that laccase activity in endocarpb cell walls depends on the SPL7 pathway to acclimate to copper deficiency and provide sufficient copper for lignin polymerization. Hence, SPL7 links mineral nutrition to efficient dispersal of the next generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.