Melanocortin peptides, the collective term for α-, β-, and γ-melanocyte-stimulating hormone (α-, β-, γ-MSH) and adrenocorticotropic hormone (ACTH), are elements of an ancient modulatory system. Natural melanocortins derive from the common precursor pro-opiomelanocortin (POMC). Five receptor subtypes for melanocortins (MC1-MC5) are widely distributed in brain regions and in peripheral cells. Melanocortin receptor activation by natural or synthetic ligands exerts marked anti-inflammatory and immunomodulatory effects. The anticytokine action and the inhibitory influences on inflammatory cell migration make melanocortins potential new drugs for treatment of inflammatory disorders. Effectiveness in treatment of acute, chronic, and systemic inflammatory disorders is well documented in preclinical studies. Further, melanocortins are promising compounds in neuroprotection. This review examines the main signaling circuits in anti-inflammatory and immunomodulatory actions of melanocortins, and the potential therapeutic use of these molecules.
Metabotropic glutamate (mGlu) receptors have been implicated in a number of physiological and pathological responses to glutamate, but the exact role of group I mGlu receptors in causing postischaemic injury is not yet clear. In this study, we examined whether the recently-characterized and relatively selective mGlu1 receptor antagonists 1-aminoindan-1,5-dicarboxylic acid (AIDA) and (S)-(+)-2-(3'-carboxybicyclo[1.1.1]pentyl)-glycine (CBPG) could reduce neuronal death in vitro, following oxygen-glucose deprivation (OGD) in murine cortical cell and rat organotypic hippocampal cultures, and in vivo, after global ischaemia in gerbils. When present in the incubation medium during the OGD insult and the subsequent 24 h recovery period, AIDA and CBPG significantly reduced neuronal death in vitro. The extent of protection was similar to that observed with the nonselective mGlu receptor antagonist (+)-alpha-methyl-4-carboxyphenylglycine [(+)MCPG] and with typical ionotropic glutamate (iGlu) receptor antagonists. Neuroprotection was also observed when AIDA or CBPG were added only after the OGD insult was terminated. Neuronal injury was not attenuated by the inactive isomer (-)MCPG, but was significantly enhanced by the nonselective mGlu receptor agonist (1S,3R)-1-aminocyclopentane-1, 3-dicarboxylic acid [(1S,3R)-ACPD] and the group I mGlu receptor agonist 3,5-dihydroxyphenylglycine (3,5-DHPG). The antagonists (+)MCPG, AIDA and CBPG were also neuroprotective in vivo, because i. c.v. administration reduced CA1 pyramidal cell degeneration examined 7 days following transient carotid occlusion in gerbils. Our results point to a role of mGlu1 receptors in the pathological mechanisms responsible for postischaemic neuronal death and propose a new target for neuroprotection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.