Hypomorphic mutations of the MRE11 gene are the hallmark of the radiosensitive ataxia-telangiectasia-like disorder (ATLD). Here, we describe a new family with two affected siblings, ATLD5 and ATLD6, now aged 37 and 36, respectively. They presented with late onset cerebellar degeneration slowly progressing until puberty and absence of telangiectasias, and were cancer-free. Both patients were wild-type for ATM and NBS1, but compound heterozygotes for MRE11 gene mutations [1422C-->A, T481K; 1714C-->T, R571X]. The 1422C-->A allele was inherited from the mother, whereas the 1714C-->T, allele paternally inherited, was apparently null as a result of nonsense-mediated mRNA decay (NMD). Interestingly, the 1714C-->T mutation is the same as previously identified in an unrelated English ATLD family (probands ATLD3 and ATLD4), suggesting an important role for NMD in saving potentially lethal mutations. Lymphoblastoid cell lines (LCLs) derived from ATLD5 and ATLD6 were normal for ATM, but defective for Mre11, Rad50 and Nbs1 (the MRN complex) protein expression. Their response to gamma-radiation was abnormal, as evidenced by the enhanced radiosensitivity, attenuated autophosphorylation of ATM-S1981 and phosphorylation of the ATM targets p53-S15 and Smc1-S966, failure to form Mre11 nuclear foci and defective G1 checkpoint arrest. The fibroblasts, but not LCLs, from ATLD5 and ATLD6 showed an impaired ATM-dependent Chk2 phosphorylation. These findings further underscore the interconnection between ATM activity and MRN function, which rationalizes the clinical similarity between ataxia-telangiectasia (A-T) and ATLD.
These data support the hypothesis that lymphotoxin alpha could be a susceptibility gene in migraine without aura and confirm previous data indicating that migraine with and without aura are distinct entities with different genetic backgrounds.
Migraine is a complex disorder caused by a combination of genetic and environmental factors.Although family and twin studies show that there is a genetic component in migraine, no genes predisposing to common forms of the disorder, migraine with and without aura, have been identified. Patients with migraine respond differently to a given drug administered. The efficacy of therapy and the occurrence of adverse drug response are a consequence of individual variability. Genetic profiling of predisposition to migraine should facilitate the development of more effective diagnostic and therapeutic applications. The development of International Hap Map project could provide a powerful tool for identification of the candidate genes in this complex disease and pharmacogenomics research could be the promise for individualized treatments and prevention of adverse drug response.
We report on a 3-year-old boy with prenatal onset of proportionate dwarfism, postnatal severe microcephaly, high forehead with receded hairline, sparse scalp hair, beaked nose, mild retrognathia and hypotonia diagnosed at birth as Seckel syndrome. At age 3 years, he became paralyzed due to a cerebrovascular malformation. Based on the clinical and radiological features showing evidence of skeletal dysplasia, the diagnosis was revised to Majewski osteodysplastic primordial dwarfism type II (MOPD II) syndrome. Western blot analysis of the patient's lymphoblastoid cell line lysate showed the absence of the protein pericentrin. Subsequent molecular analysis identified a novel homozygous single base insertion (c.1527_1528insA) in exon 10 of the PCNT gene, which leads to a frameshift (Treo510fs) and to premature protein truncation. PCNT mutations must be considered diagnostic of MOPD II syndrome. A possible role of pericentrin in the development of cerebral vessels is suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.