Background Despite a similar histologic appearance, upper tract urothelial carcinoma (UTUC) and urothelial carcinoma of the bladder (UCB) tumors have distinct epidemiologic and clinicopathologic differences. Objective To investigate whether the differences between UTUC and UCB result from intrinsic biological diversity. Design, setting, and participants Tumor and germline DNA from patients with UTUC (n = 83) and UCB (n = 102) were analyzed using a custom next-generation sequencing assay to identify somatic mutations and copy-number alterations in 300 cancer-associated genes. Outcome measurements and statistical analysis We described co-mutation patterns and copy-number alterations in UTUC. We also compared mutation frequencies in high-grade UTUC (n = 59) and high-grade UCB (n = 102). Results and limitations Comparison of high-grade UTUC and UCB revealed significant differences in the prevalence of somatic alterations. Alterations more common in high-grade UTUC included fibroblast growth factor receptor 3 (FGFR3; 35.6% vs 21.6%; p = 0.065), Harvey rat sarcoma viral oncogene homolog (HRAS; 13.6% vs 1.0%; p = 0.001), and cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) (CDKN2B; 15.3% vs 3.9%; p = 0.016). Genes less frequently mutated in high-grade UTUC included tumor protein p53 (TP53; 25.4% vs 57.8%; p < 0.001), retinoblastoma 1 (RB1; 0.0% vs 18.6%; p < 0.001), and AT rich interactive domain 1A (SWI-like) (ARID1A; 13.6% vs 27.5%; p = 0.050). Because our assay was restricted to genomic alterations in a targeted panel, rare mutations and epigenetic changes were not analyzed. Conclusions High-grade UTUC tumors display a spectrum of genetic alterations similar to high-grade UCB. However, there were significant differences in the prevalence of several recurrently mutated genes including HRAS, TP53, and RB1. As relevant targeted inhibitors are being developed and tested, these results may have important implications for the site-specific management of patients with urothelial carcinoma. Patient summary Comparison of next-generation sequencing of upper tract urothelial carcinoma (UTUC) with urothelial bladder cancer identified that similar mutations were present in both cancer types but at different frequencies, indicating a potential need for unique management strategies. UTUC tumors were found to have a high rate of mutations that could be targeted with novel therapies.
Background Metastatic renal cell carcinoma (RCC) patients are commonly treated with vascular endothelial growth factor (VEGF) inhibitors or mammalian target of rapamycin inhibitors. Correlations between somatic mutations and first-line targeted therapy outcomes have not been reported on a randomized trial. Objective To evaluate the relationship between tumor mutations and treatment outcomes in RECORD-3, a randomized trial comparing first-line everolimus (mTOR inhibitor) followed by sunitinib (VEGF inhibitor) at progression with the opposite sequence in 471 metastatic RCC patients. Design, setting, and participants Targeted sequencing of 341 cancer genes at ~540× coverage was performed on available tumor samples from 258 patients; 220 with clear cell histology (ccRCC). Outcome measurements and statistical analysis Associations between somatic mutations and median first-line progression free survival (PFS1L) and overall survival were determined in metastatic ccRCC using Cox proportional hazards models and log-rank tests. Results and limitations Prevalent mutations (≥ 10%) were VHL (75%), PBRM1 (46%), SETD2 (30%), BAP1 (19%), KDM5C (15%), and PTEN (12%). With first-line everolimus, PBRM1 and BAP1 mutations were associated with longer (median [95% confidence interval {CI}] 12.8 [8.1, 18.4] vs 5.5 [3.1, 8.4] mo) and shorter (median [95% CI] 4.9 [2.9, 8.1] vs 10.5 [7.3, 12.9] mo) PFS1L, respectively. With first-line sunitinib, KDM5C mutations were associated with longer PFS1L (median [95% CI] of 20.6 [12.4, 27.3] vs 8.3 [7.8, 11.0] mo). Molecular subgroups of metastatic ccRCC based on PBRM1, BAP1, and KDM5C mutations could have predictive values for patients treated with VEGF or mTOR inhibitors. Most tumor DNA was obtained from primary nephrectomy samples (94%), which could impact correlation statistics. Conclusions PBRM1, BAP1, and KDM5C mutations impact outcomes of targeted therapies in metastatic ccRCC patients. Patient summary Large-scale genomic kidney cancer studies reported novel mutations and heterogeneous features among individual tumors, which could contribute to varied clinical outcomes. We demonstrated correlations between somatic mutations and treatment outcomes in clear cell renal cell carcinoma, supporting the value of genomic classification in prospective studies.
Altered expression of matricellular proteins can become pathogenic in the presence of persistent perturbations in tissue homeostasis. Here, we show that autoimmunity associated with Fas mutation was exacerbated and transitioned to lymphomagenesis in the absence of SPARC (secreted protein acidic rich in cysteine). The absence of SPARC resulted in defective collagen assembly, with uneven compartmentalization of lymphoid and myeloid populations within secondary lymphoid organs (SLO), and faulty delivery of inhibitory signals from the extracellular matrix. These conditions promoted aberrant interactions between neutrophil extracellular traps and CD5 + B cells, which underwent malignant transformation due to defective apoptosis under the pressure of neutrophil-derived trophic factors and NF-κB activation. Furthermore, this model of defective stromal remodeling during lymphomagenesis correlates with human lymphomas arising in a SPARC-defective environment, which is prototypical of CD5 + B-cell chronic lymphocytic leukemia (CLL). SIGNIFICANCE:These results reveal the importance of stromal remodeling in SLO to accommodate autoimmune lymphoproliferation while preventing lymphomagenesis. Our fi ndings reveal a link between SPARC, collagen deposition, and the engagement of the immune-inhibitory receptor LAIR-1 on neutrophils, neutrophil cell death via NETosis, and the stimulation of CD5 + B-cell proliferation. Moreover, we show that SPARC defi ciency promotes CD5 + B-cell lymphomagenesis and is correlated with CLL in humans. Cancer Discov; 4(1);
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.