While there has been growing interest for noncommutative spaces in recent times, most examples have been based on the simplest noncommutative algebra: [x i , x j ] = iθ ij . Here we present new classes of (non-formal) deformed products associated to linear Lie algebras of the kind [x i , x j ] = ic k ij x k . For all possible threedimensional cases, we define a new star product and discuss its properties. To complete the analysis of these novel noncommutative spaces, we introduce noncompact spectral triples, and the concept of star triple, a specialization of the spectral triple to deformations of the algebra of functions on a noncompact manifold. We examine the generalization to the noncompact case of Connes' conditions for noncommutative spin geometries, and, in the framework of the new star products, we exhibit some candidates for a Dirac operator. On the technical level, properties of the Moyal multiplier algebra M (R 2n θ ) are elucidated.
The phase transition of the Gross-Neveu model with N fermions is investigated by means of a nonperturbative evolution equation for the scale dependence of the effective average action. The critical exponents and scaling amplitudes are calculated for various values of N in d = 3. It is also explicitly verified that the Neveu-Yukawa model belongs to the same universality class as the Gross-Neveu model.
We discuss the effects that a noncommutative geometry induced by a Drinfeld twist has on physical theories. We systematically deform all products and symmetries of the theory. We discuss noncommutative classical mechanics, in particular its deformed Poisson bracket and hence time evolution and symmetries. The twisting is then extended to classical fields, and then to the main interest of this work: quantum fields. This leads to a geometric formulation of quantization on noncommutative spacetime, i.e. we establish a noncommutative correspondence principle from ⋆-Poisson brackets to ⋆-commutators. In particular commutation relations among creation and annihilation operators are deduced.
In the framework of quantum information geometry, we derive, from quantum relative Tsallis entropy, a family of quantum metrics on the space of full rank, N level quantum states, by means of a suitably defined coordinate free differential calculus. The cases N = 2, N = 3 are discussed in detail and notable limits are analyzed. The radial limit procedure has been used to recover quantum metrics for lower rank states, such as pure states.By using the tomographic picture of quantum mechanics we have obtained the Fisher-Rao metric for the space of quantum tomograms and derived a reconstruction formula of the quantum metric of density states out of the tomographic one. A new inequality obtained for probabilities of three spin-1/2 projections in three perpendicular directions is proposed to be checked in experiments with superconducting circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.