An investigation of the vibrational density of states (VDOS) in silver nanocrystals is performed using Raman scattering. A specific sample architecture, setup configuration, and original elaboration process are used in order to take simultaneously advantage of spectrally and spatially localized surface plasmon resonance, optical amplification, and dark-field spectroscopy. Disentangling the contributions of atom vibrations and electron-hole excitations (i.e., the so-called "background" in surface-enhanced Raman scattering) is performed. The extracted VDOS is successfully compared with theoretical ones obtained by atomic scale simulations. The effects of size, strain, and disorder on the VDOS are analyzed; in particular, the strain effect is investigated experimentally using the geometrical phase analysis coupled with high-resolution transmission electron microscopy. This work offers an opportunity to examine thermodynamic properties, like specific heat, at the nanoscale.
A strategy to design and fabricate hybrid metallic-dielectric substrates for optical spectroscopy and imaging is proposed. Different architectures consisting of three-dimensional patterns of metallic nanoparticles embedded in dielectric layers are conceived to simultaneously exploit the optical interference phenomenon in stratified media and localized surface plasmon resonances on metal nanoparticles. These structures are based on a simultaneous control of opto-electronic properties at three scales (3S) (~2/20/200 nm) and along three directions (3D). By ultralow energy ion implantation through a microfabricated stencil we precisely control the size, density, and location of silver nanoparticles embedded in silica/silicon thin films. Elastic (Rayleigh) and inelastic (Raman) scattering imaging assisted by simulations were used to analyze the optical response of these "3S-3D" patterned layers. The reflectance contrast is strongly enhanced when resonance conditions between the stationary electromagnetic field in the dielectric matrix and the localized plasmon resonance in the silver nanoparticles are realized. The potential of these 3S-3D metal-dielectric structures as surface-enhanced Raman scattering substrates is demonstrated. These novel kinds of plasmonic-photonic architectures are reproducible and stable; they preserve flat and chemically uniform surfaces, offering opportunities for the development of efficient and reusable substrates for optical spectroscopy and imaging enhancement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.