Sequence-deficient mitochondrial pre-mRNAs in African trypanosomes are substrates of a U-nucleotide-specific RNA editing reaction to generate translation-competent mRNAs. The reaction is catalyzed by a macromolecular protein complex termed the editosome. Editosomes execute RNA-chaperone activity to overcome the highly folded nature of pre-edited substrate mRNAs. The molecular basis for this activity is unknown. Here we test five of the OB-fold proteins of the Trypanosoma brucei editosome as candidates. We demonstrate that all proteins execute RNA-chaperone activity albeit to different degrees. We further show that the activities correlate to the surface areas of the proteins and we map the protein-induced RNA-structure changes using SHAPE-chemical probing. To provide a structural context for our findings we calculate a coarse-grained model of the editosome. The model has a shell-like structure: Structurally well-defined protein domains are separated from an outer shell of intrinsically disordered protein domains, which suggests a surface-driven mechanism for the chaperone activity.
a b s t r a c tMitochondrial pre-mRNAs in trypanosomatids undergo RNA editing to be converted into translatable mRNAs. The reaction is characterized by the insertion and deletion of uridine residues and is catalyzed by a macromolecular protein complex called the editosome. Despite intensive research, structural information for the majority of editosome proteins is still missing and no high resolution structure for the editosome exists. Here we present a comprehensive structural bioinformatics analysis of all proteins of the Trypanosoma brucei editosome. We specifically focus on the interplay between intrinsic order and disorder. According to computational predictions, editosome proteins involved in the basal reaction steps of the processing cycle are mostly ordered. By contrast, thirty percent of the amino acid content of the editosome is intrinsically disordered, which includes most prominently proteins with OB-fold domains. Based on the data we suggest a functional model, in which the structurally disordered domains of the complex are correlated with the RNA binding and RNA unfolding activity of the T. brucei editosome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.