In this paper, the potential of novel polymer sorbents with the imprinted IL-functional group for the removal of Cu(II), Cd(II), and Zn(II) from aqueous solutions was investigated by batch mode. The sorbents were fabricated by direct reaction of the prepared polymer matrix (poly(vinylbenzyl chloride-divinylbenzene), VBC, and poly(vinylbenzyl bromide-divinylbenzene), VBBr) with 1-(3- or 4-pyridyl)undecan-1-one and oxime of 1-(3- or 4-pyridyl)undecan-1-one. The Fourier Transform Infrared Spectroscopy (FT-IR), Raman Spectroscopy (Raman), Thermogravimetric Analysis (TG), Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM) techniques were used to show functionality and stability of the sorbents. The materials were also characterized by contact-angle goniometry, X-rayphotoelectron spectroscopy (XPS), and Zeta potential analysis. The removal of Cd(II), Cu(II), and Zn(II) was monitored and optimized under the influence of several operational controlling conditions and factors such as pH, shaking time, temperature, initial metal ions concentration, and counter-ions at the functional group. The results obtained confirmed the very high potential of the sorbents; however, the properties depend on the structure of the functional group. The tested sorbents showed fast kinetics, significant capacity at 25 °C (84 mg/g for the Zn(II) sorption with VBC-Ox4.10, 63 mg/g for the Cd(II) sorption with VBBr-Ox3.10, and 69 mg/g for the Cu(II) sorption with VBC-K3.10), and temperature dependence (even 100% increase in capacity values at 45 °C). The selected sorbent can be regenerated without a significant decrease in the metal removal efficiency.
Removal of toxic contaminants such as Pb(II) from waste solutions is environmentally requested. Therefore, in this paper, for potential novel sorbents, mesoporous ionic liquid-functionalized silicas were synthesized and tested for the removal of Pb(II) from aqueous solutions. The successful synthesis of the adsorbents was proved by nuclear magnetic resonance (29Si and 13C NMR), Fourier transform infrared spectroscopy (FTIR), and elemental analysis. The structural and textural properties were determined using scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (TEM), and low-temperature N2 sorption, and the result showed that the applied procedure made it possible to obtain highly ordered particles with a two-dimensional mesostructure. The effects of several parameters including initial pH, contact time, adsorption temperature, and Pb(II) concentration were studied in detail and were discussed to evaluate the adsorption properties of the fabricated materials towards Pb(II). The obtained results confirmed a very high potential of the sorbents; however, the adsorption properties depend on the structure and amounts of the functional group onto fabricated materials. The sample ILS-Ox3-40 showed fast kinetics (equilibrium reached within 10 min) and capacity of 172 mg/g, and that makes it a promising sorbent for the cleanup of water contaminated by lead. It was also indicated that, regardless on structure of the tested materials, the Pb(II) removal was spontaneous and exothermic. The fabricated mesoporous silicas exhibited that they were easy to regenerate and had excellent reusability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.