Background and Objectives: Application of the EMG-driven robotic training in everyday therapeutic processes is a modern and innovative form of neurorehabilitation among patients after stroke. Active participation of the patient contributes to significantly higher activation of the sensorimotor network during active motor control rather than during passive movement. The study objective was to determine the effect of electromyographic triggering (EMG-triggered) robotic rehabilitation device treatment on walking, muscle force, and spasticity after an ischemic stroke. Materials and Methods: A total of 60 participants with impaired motor function and gait after subacute stroke were included in the study. Each patient was randomly assigned to an intervention or control group (IG or CG). All patients, except standard therapy, underwent 1 additional session of therapy per day, 5 days a week for 6 weeks. IG had 30 min of training on the robot, while CG received exercises on the lower limb rotor. The subjects were assessed with Timed Up and Go Test (TUG), Ashworth scale, knee range of motion (ROM), Lovett Scale, and tight circumference at baseline and at weeks 2, 4, and 6. Results: For seven parameters, the values credibly increased between consecutive measurements, and for the Ashworth scale, they credibly decreased. The biggest changes were observed for the measurements made with Lovett scale. The average thigh circumference as measured 5 and 15 cm above the knee increased credibly more in the robot condition, as compared to control condition. Additionally, the decrease in Ashworth values over time, although statistically credible in both groups, was credibly higher in the robot condition. Conclusion: The inclusion of the EMG-triggered neurorehabilitation robot in the patient’s daily rehabilitation plan has a positive effect on outcomes of the treatment. Both proposed rehabilitation protocols significantly improved patients’ condition regarding all measured outcomes, but the spasticity and thigh circumference improved significantly better in the robotic group in comparison to controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.