Friction is an undesirable phenomenon in the flange area of the drawpiece in sheet metal forming processes, causing a deterioration in surface finish and a decrease in the formability limits of the sheet metal. The aim of this work is numerical analysis using the finite element method of the strip drawing test with two rounded countersamples. This test simulates friction conditions in the flange area of the drawpiece. The results of the experimental research on the influence of surface roughness on the value of the friction coefficient of S235 steel samples were used to verify the numerical results. The relation between the real contact area and the mean roughness Ra of the countersamples was determined. The real contact area increases with the increase of the mean roughness Ra. In sheet metal forming processes, the coefficient of friction depends on the real contact area, and its value increases with the increase of the real contact area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.