Long-term ethanol consumption at low to moderate levels exerts cardioprotective effects in the setting of ischemia and reperfusion (I/R). The aims of this study were to determine whether 1) a single orally administered dose of ethanol [ethanol preconditioning (EtOH-PC)] would induce a biphasic temporal pattern of protection (early and late phases) against the inflammatory responses to I/R and 2) adenosine and nitric oxide (NO) act as initiators of the late phase of protection. Ethanol was administered as a bolus to C57BL/6 mice at a dose that achieved a peak plasma concentration of ~45 mg/dl 30 min after gavage and returned to control levels within 60 min of alcohol ingestion. The superior mesenteric artery was occluded for 45 min followed by 60 min of reperfusion beginning 10 min or 1, 2, 3, 4, or 24 h after ethanol ingestion, and the numbers of fluorescently labeled rolling and firmly adherent (stationary) leukocytes in single postcapillary venules of the small intestine were quantified using intravital microscopic approaches. I/R induced marked increases in leukocyte rolling and adhesion, effects that were attenuated by EtOH-PC 2-3 h before I/R (early phase), absent when assessed after 10 min, 1 h, and 4 h of ethanol ingestion, with an even more powerful late phase of protection reemerging when I/R was induced 24 h later. The anti-inflammatory effects of late EtOH-PC were abolished by treatment with adenosine deaminase, an adenosine A(2) (but not A(1)) receptor antagonist, or a NO synthase (NOS) inhibitor during the period of EtOH-PC. Preconditioning with an adenosine A(2) (but not an A(1)) receptor agonist in lieu of ethanol 24 h before I/R mimicked the protective actions of late phase EtOH-PC. Like EtOH-PC, the effect of preconditioning with an adenosine A(2) receptor agonist was abrogated by coincident NOS inhibition. These findings suggest that EtOH-PC induces a biphasic temporal pattern of protection against the proinflammatory effects of I/R. In addition, our observations are consistent with the hypothesis that the late phase of EtOH-PC is triggered by NO formed secondary to adenosine A(2) receptor-dependent activation of NOS during the period of ethanol exposure.
The dextran sulfate (DSS) model of colitis causes intestinal injury sharing many characteristics with inflammatory bowel disease, e.g., leukocyte infiltration, loss of gut epithelial barrier, and cachexia. These symptoms are partly mediated by entrapped leukocytes binding to multiple endothelial adhesion molecules (MAdCAM-1, VCAM-1, ICAM-1, and E-selectin). Pravastatin, an 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitor, has anti-inflammatory potency in certain inflammation models; therefore, in this study, we measured the effects of pravastatin in DSS-induced colitis. The administration of pravastatin (1 mg/kg) relieved DSS-induced cachexia, hematochezia, and intestinal epithelial permeability, with no effect on serum cholesterol. Histopathologically, pravastatin prevented leukocyte infiltration and gut injury. Pravastatin also blocked the mucosal expression of MAdCAM-1. DSS treatment promoted mucosal endothelial nitric-oxide synthase (eNOS) mRNA degradation, an effect that was blocked by pravastatin. Importantly, the protective effects of pravastatin in DSS-induced colitis were not found in eNOS-deficient mice. Our results demonstrate that HMG-CoA reductase inhibitors preserve intestinal integrity in colitis, most likely via increased eNOS expression and activity, independent of cholesterol metabolism.Inflammatory bowel disease (IBD) (Crohn's colitis and ulcerative colitis) is characterized by tissue edema, increased gut epithelial permeability, and extensive infiltration of the gut by leukocytes. The general morbidity and weight loss in individuals with IBD can be attributed to leukocyte sequestration in the gut in this condition (Perkal and Seashore, 1989;Shanahan, 2002). The current literature suggests that multiple immune, genetic, and environmental factors influence both the initiation and progression of colitis (Farrell and Peppercorn, 2002). Despite the fact that the normal intestinal mucosa maintains a high density of leukocytes compared with most tissues, it is not typically inflamed or edematous. However, during active periods of colitis, the colon is even more extensively colonized by lymphocytes and neutrophils that promote extensive oxidant and protease-dependent injury to the gut. Therefore, it is assumed that the intestine has several specialized mechanisms that normally contain these immune responses and that the impairment of these immune-limiting processes causes the entrapment and activation of leukocytes seen in IBD injury. Among the several endogenous agents that control inflammation, nitric oxide has received a great deal of interest as a factor that can limit forms of inflammation. Endothelial cells release nitric oxide (NO) through both by the "constitutive" (eNOS and NOS3) and inducible nitric oxide synthases (iNOS and NOS1). NO released by microvascular endothelial cells reduces several indices of inflammation in vivo and in vitro. NO is a potent reactive oxygen species scavenger and can block many oxidant-mediated inflammatory responses including leukocyte and platel...
Ingestion of low levels of ethanol 24 h before [ethanol preconditioning (EPC)] ischemia and reperfusion (I/R) prevents postischemic leukocyte rolling (LR) and adhesion (LA), effects that were abolished by adenosine A(2) receptor (ADO-A(2)R) antagonists or nitric oxide (NO) synthase (NOS) inhibitors. The aims of this study were to determine whether NO derived from endothelial NOS (eNOS) during the period of ethanol exposure triggered entrance into this preconditioned state and whether these events were initiated by an ADO-A(2)R-dependent mechanism. Ethanol or distilled water vehicle was administered to C57BL/6J [wild type (WT)] or eNOS-deficient (eNOS-/-) mice by gavage. Twenty-four hours later, the superior mesenteric artery was occluded for 45 min. LR and LA were quantified by intravital microscopy after 30 and 60 min of reperfusion. I/R increased LR and LA in WT mice, effects that were abolished by EPC or NO donor preconditioning (NO-PC). NO-PC was not attenuated by coincident administration of an ADO-A(2)R antagonist. I/R increased LR and LA in eNOS-/- mice to levels comparable with those noted in WT animals. However, EPC only slightly attenuated postischemic LR and LA, whereas NO-PC remained effective as a preconditioning stimulus in eNOS-/- mice. Preconditioning with an ADO-A(2)R agonist (which we previously demonstrated prevents I/R-induced LR and LA in WT animals) failed to attenuate these postischemic adhesive responses in eNOS-/- mice. Our results indicate that EPC is triggered by NO formed secondary to ADO-A(2)R-dependent eNOS activation during the period of ethanol exposure 24 h before I/R.
The data indicate that antecedent ethanol exposure prevents postischemic P-selectin expression on day 2 by a mechanism that is triggered by adenosine A2 receptor activation and the formation of nitric oxide (NO) and reactive oxygen species (ROS) during the period of ethanol exposure on day 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.