The wide-ranging and complex spectrum of phenotypes reported herein broadens those previously described for Alström syndrome. These findings will aid physicians in making an early and accurate diagnosis and will help effect appropriate monitoring and treatment.
Mice homozygous for the fat mutation develop obesity and hyperglycaemia that can be suppressed by treatment with exogenous insulin. The fat mutation maps to mouse chromosome 8, very close to the gene for carboxypeptidase E (Cpe), which encodes an enzyme (CPE) that processes prohormone intermediates such as proinsulin. We now demonstrate a defect in proinsulin processing associated with the virtual absence of CPE activity in extracts of fat/fat pancreatic islets and pituitaries. A single Ser202Pro mutation distinguishes the mutant Cpe allele, and abolishes enzymatic activity in vitro. Thus, the fat mutation represents the first demonstration of an obesity-diabetes syndrome elicited by a genetic defect in a prohormone processing pathway.
Mutations within the CRB1 gene have been shown to cause human retinal diseases including retinitis pigmentosa and Leber congenital amaurosis. We have recently identified a mouse model, retinal degeneration 8 (rd8) with a single base deletion in the Crb1 gene. This mutation is predicted to cause a frame shift and premature stop codon which truncates the transmembrane and cytoplasmic domain of CRB1. Like in Drosophila crumbs (crb) mutants, staining for adherens junction proteins known to localize to the external limiting membrane, the equivalent of the zonula adherens in the mammalian retina, is discontinuous and fragmented. Shortened photoreceptor inner and outer segments are observed as early as 2 weeks after birth, suggesting a developmental defect in these structures rather than a degenerative process. Photoreceptor degeneration is observed only within regions of retinal spotting, which is seen predominantly in the inferior nasal quadrant of the eye, and is caused by retinal folds and pseudorosettes. Photoreceptor dysplasia and degeneration in Crb1 mutants strongly vary with genetic background, suggesting that the variability in phenotypes of human patients that carry mutations in CRB1 may be due to interactions with background modifiers in addition to allelic variations. The Crb1rd8 mouse model will facilitate the analysis of Crb1 function in the neural retina and the identification of interacting factors as candidate retinal disease genes.
Alström syndrome is a homogeneous autosomal recessive disorder that is characterized by childhood obesity associated with hyperinsulinemia, chronic hyperglycemia and neurosensory deficits 1,2 . The gene involved in Alström syndrome probably interacts with genetic modifiers, as subsets of affected individuals present with additional features such as dilated cardiomyopathy 3 , hepatic dysfunction 4 , hypothyroidism 5 , male hypogonadism, short stature and mild to moderate developmental delay, and with secondary complications normally associated with type 2 diabetes, such as hyperlipidemia and atherosclerosis. Our detection of an uncharacterized transcript, KIAA0328, led us to identify the gene ALMS1, which contains sequence variations, including four frameshift mutations and two nonsense mutations, that segregate with Alström syndrome in six unrelated families. ALMS1 is ubiquitously expressed at low levels and does not share significant sequence homology with other genes reported so far. The identification of ALMS1 provides an entry point into a new pathway leading toward the understanding of both Alström syndrome and the common diseases that characterize it.
The rd7 mouse is a model for hereditary retinal degeneration characterized clinically by retinal spotting throughout the fundus and late onset retinal degeneration, and histologically by retinal dysplasia manifesting as folds and whorls in the photoreceptor layer. This study demonstrates that the rd7 phenotype results from a splicing error created by a genomic deletion of an intron and part of an exon. Hematoxylin/eosin staining of rd7 tissue shows that the whorls in the outer nuclear layer of the retina do not appear during embryonic development but manifest by postnatal day 12.5 (P12.5). Furthermore, in situ hybridization data indicates that the Nr2e3 message is first present at barely discernable levels at embryonic day 18.5, becomes abundant by P2.5, and reaches maximal adult levels by P10.5. Results from these experiments indicate that Nr2e3 message is expressed prior to the development of S-cones. This data coincides with studies in humans showing that mutations in Nr2e3 result in a unique type of retinal degeneration known as enhanced S-cone syndrome, where patients have a 30-fold increase in S-cone sensitivity compared to normal. Immunohistochemical staining of cone cells demonstrates that rd7 retinas have an increased number of cone cells compared to wild-type retinas. Thus, Nr2e3 may function by regulating genes involved in cone cell proliferation, and mutations in this gene lead to retinal dysplasia and degeneration by disrupting normal photoreceptor cell topography as well as cell-cell interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.