This study explored the hypothesis that late gestational reduction of corticosteroids transforms the cerebrovasculature and modulates postnatal vulnerability to mild hypoxic-ischemic (HI) injury. Four groups of Sprague-Dawley neonates were studied: 1) Sham-Control, 2) Sham-MET, 3) HI-Control, and 4) HI-MET. Metyrapone (MET), a corticosteroid synthesis inhibitor, was administered via drinking water from gestational day 11 to term. In Shams, MET administration 1) decreased reactivity of the hypothalamic-pituitary-adrenal (HPA) axis to surgical trauma in postnatal day 9 (P9) pups by 37%, 2) promoted cerebrovascular contractile differentiation in middle cerebral arteries (MCAs), 3) decreased compliance ≤46% and increased depolarization-induced calcium mobilization in MCAs by 28%, 4) mildly increased hemispheric cerebral edema by 5%, decreased neuronal degeneration by 66%, and increased astroglial and microglial activation by 10- and 4-fold, respectively, and 5) increased righting reflex times by 29%. Regarding HI, metyrapone-induced fetal transformation 1) diminished reactivity of the HPA axis to HI-induced stress in P9/P10 pups, 2) enhanced HI-induced contractile dedifferentiation in MCAs, 3) lessened the effects of HI on MCA compliance and calcium mobilization, 4) decreased HI-induced neuronal injury but unmasked regional HI-induced depression of microglial activation, and 5) attenuated the negative effects of HI on open-field exploration but enhanced the detrimental effects of HI on negative geotaxis responses by 79%. Overall, corticosteroids during gestation appear essential for normal cerebrovascular development and glial quiescence but induce persistent changes that in neonates manifest beneficially as preservation of postischemic contractile differentiation but detrimentally as worsened ischemic cerebrovascular compliance, increased ischemic neuronal injury, and compromised neurobehavior.
The present study explored the hypothesis that an adverse intrauterine environment caused by maternal undernutrition (MUN) acted through corticosteroid-dependent and -independent mechanisms to program lasting functional changes in the neonatal cerebrovasculature and vulnerability to mild hypoxic-ischemic (HI) injury. From day 10 of gestation until term, MUN and MUN-metyrapone (MUN-MET) group rats consumed a diet restricted to 50% of calories consumed by a pair-fed control; and on gestational day 11 through term, MUN-MET groups received drinking water containing MET (0.5 mg/mL), a corticosteroid synthesis inhibitor. P9/P10 pups underwent unilateral carotid ligation followed 24 h later by 1.5 h exposure to 8% oxygen (HI treatment). An ELISA quantified MUN-, MET-, and HI-induced changes in circulating levels of corticosterone. In P11/P12 pups, MUN programming promoted contractile differentiation in cerebrovascular smooth muscle as determined by confocal microscopy, modulated calcium-dependent contractility as revealed by cerebral artery myography, enhanced vasogenic edema formation as indicated by T2 MRI, and worsened neurobehavior MUN unmasked HI-induced improvements in open-field locomotion and in edema resolution, alterations in calcium-dependent contractility and promotion of contractile differentiation. Overall, MUN imposed multiple interdependent effects on cerebrovascular smooth muscle differentiation, contractility, edema formation, flow-metabolism coupling and neurobehavior through pathways that both required, and were independent of, gestational corticosteroids. In light of growing global patterns of food insecurity, the present study emphasizes that infants born from undernourished mothers may experience greater risk for developing neonatal cerebral edema and sensorimotor impairments possibly through programmed changes in neonatal cerebrovascular function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.