Electronic Healthcare Records (EHRs) describe the details about a patient's physical and mental health, diagnosis, lab results, treatments or patient care plan and so forth. Currently, the International Classification of Diseases, 10 th Revision or ICD-10 code is used for representing each patient record. The huge amount of information in these records provides insights about the diagnosis and prediction of various diseases. Various data mining techniques are used for the analysis of data deriving from these patient records. Recurrent Neural Network (RNN) is a powerful and widely used technique in machine learning and bioinformatics. This research aims at the investigation of RNN with Long Short-Term Memory (LSTM) hidden units. The empirical research is intended to evaluate the ability of LSTMs to recognize patterns in multi-label classification of cerebrovascular symptoms or stroke. First, we integrated ICD-10 code into health record, as well as other potential risk factors within EHRs into the pattern and model for prediction. Next, we modelled the effectiveness of LSTMs for prediction of stroke based on healthcare records. The results show several strong baselines that include accuracy, recall, and F1 measure score.
Many predictive techniques have been widely applied in clinical decision making such as predicting occurrence of a disease or diagnosis, evaluating prognosis or outcome of diseases and assisting clinicians to recommend treatment of diseases. However, the conventional predictive models or techniques are still not effective enough in capturing the underlying knowledge because it is incapable of simulating the complexity on feature representation of the medical problem domains. This research reports predictive analytical techniques for stroke using deep learning model applied on heart disease dataset. The atrial fibrillation symptoms in heart patients are a major risk factor of stroke and share common variables to predict stroke. The outcomes of this research are more accurate than medical scoring systems currently in use for warning heart patients if they are likely to develop stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.