The operation of a crystalline silicon solar cell was studied by a methodology based on collection efficiency. The collection efficiencies of the base, emitter, and depletion layers were determined separately using numerical solutions. The quantum efficiency was then determined by the reciprocity theorem. It is shown that the model can provide useful new insights and can be used to extract device parameters by fitting the modelled results to experimental data. r
The chapter outlines a range of materials and techniques that can be employed to improve sunlight capture for application in photovoltaics (PV). We review processes such as simple luminescence down-shifting structures, luminescent (or fluorescent) solar collectors and light trapping via a frequency shift which result in an increase of the solar photon flux and significant reduction in PV material requirements. A simple two-flux model is presented within a unified treatment for the collectors and down-shifting structures to estimate re-absorption losses and to determine the collection efficiency based on spectroscopic measurements of the absorption and luminescence spectra. Photon frequency management materials are reviewed which use efficient resonance energy transfer to wavelength shift the incoming solar flux. We show that frequency photon management represents a powerful tool, allowing enhancement in light trapping above the Yablononovitch limit and leading to potentially highly efficient, but employing very thin crystalline silicon, solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.