Glucocorticoids and FoxO3 exert similar metabolic effects in skeletal muscle. FoxO3 gene expression was increased by dexamethasone (Dex), a synthetic glucocorticoid, both in vitro and in vivo. In C2C12 myotubes the increased expression is due to, at least in part, the elevated rate of FoxO3 gene transcription. In the mouse FoxO3 gene, we identified three glucocorticoid receptor (GR) binding regions (GBRs): one being upstream of the transcription start site, −17kbGBR; and two in introns, +45kbGBR and +71kbGBR. Together, these three GBRs contain four 15-bp glucocorticoid response elements (GREs). Micrococcal nuclease (MNase) assay revealed that Dex treatment increased the sensitivity to MNase in the GRE of +45kbGBR and +71kbGBR upon 30- and 60-min Dex treatment, respectively. Conversely, Dex treatment did not affect the chromatin structure near the −17kbGBR, in which the GRE is located in the linker region. Dex treatment also increased histone H3 and/or H4 acetylation in genomic regions near all three GBRs. Moreover, using chromatin conformation capture (3C) assay, we showed that Dex treatment increased the interaction between the −17kbGBR and two genomic regions: one located around +500 bp and the other around +73 kb. Finally, the transcriptional coregulator p300 was recruited to all three GBRs upon Dex treatment. The reduction of p300 expression decreased FoxO3 gene expression and Dex-stimulated interaction between distinct genomic regions of FoxO3 gene identified by 3C. Overall, our results demonstrate that glucocorticoids activated FoxO3 gene transcription through multiple GREs by chromatin structural change and DNA looping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.