Our aim was to determine whether meal fatty acids influence insulin and glucose responses to mixed meals and whether these effects can be explained by variations in postprandial NEFA and Apo, which regulate the metabolism of triacylglycerol-rich lipoproteins (Apo C and E). A single-blind crossover study examined the effects of single meals enriched in saturated fatty acids SFA), n-6 PUFA and MUFA on plasma metabolite and insulin responses. The triacylglycerol response following the PUFA meal showed a lower net incremental area under the curve than following the SFA and MUFA meals (P,0·007). Compared with the SFA meal, the PUFA meal showed a lower net incremental area under the curve for the NEFA response from initial suppression to the end of the postprandial period (180-480 min; P,0·02), and both PUFA and MUFA showed a lower net incremental glucose response (P,0·02), although insulin concentrations were similar between meals. The pattern of the Apo E response was also different following the SFA meal (P,0·02). There was a significant association between the net incremental NEFA (180 -480 min) and glucose response (r s ¼ 0·409, P¼ 0·025), and in multiple regression analysis the NEFA response accounted for 24 % of the variation in glucose response. Meal SFA have adverse effects on the postprandial glucose response that may be due to greater elevations in NEFA arising from differences in the metabolism of SFA-v. PUFA-and MUFA-rich lipoproteins. Elevated Apo E responses to high-SFA meals may have important implications for the hepatic metabolism of triacylglycerol-rich lipoproteins.
Clinical islet transplantation achieves insulin independence in selected patients, yet current methods for extracting islets from their surrounding pancreatic matrix are suboptimal. The islet basement membrane (BM) influences islet function and survival, and is a critical marker of islet integrity following rodent islet isolation. No studies have investigated the impact of islet isolation on BM integrity in human islets, which have a unique duplex structure. To address this, samples were taken from 27 clinical human islet isolations (donor age 41-59, BMI 26-38, CIT <10h). Collagen IV, panlaminin, perlecan and laminin-α5 in the islet BM were significantly digested by enzyme treatment. In isolated islets, laminin-α5 (found in both layers of the duplex BM) and perlecan were lost entirely, with no restoration evident during culture. Collagen IV and pan-laminin were present in the disorganised BM of isolated islets, yet a significant reduction in pan-laminin was seen during the initial 24h culture period. Islet cytotoxicity increased during culture. Therefore, the human islet BM is substantially disrupted during the islet isolation procedure. Islet function and survival may be compromised as a consequence of an incomplete islet BM, which has implications for islet survival and transplanted graft longevity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.