We have identified a potentially therapeutic anti-human immunodeficiency virus (HIV)-1 oligonucleotide composed entirely of deoxyguanosines and thymidines (T30177, also known as AR177: 5-g*tggtgggtgggtggg*t-3, where asterisk indicates phosphorothioate linkage). In acute assay systems using human T-cells, T30177 and its total phosphodiester homologue T30175 inhibited HIV-1-induced syncytium production by 50% at 0.15 and 0.3 M, respectively. Under physiological conditions, the sequence and composition of the 17-mer favors the formation of a compact, intramolecularly folded structure dominated by two stacked guanine quartet motifs that are connected by three loops of TGs. The molecule is stabilized by the coordination of a potassium ion between the two stacked quartets. We now show that these guanine quartet-containing oligonucleotides are highly resistant to serum nucleases, with t 1 ⁄2 of 5 h and >4 days for T30175 and T30177, respectively. Both oligonucleotides were internalized efficiently by cells, with intracellular concentrations reaching 5-10-fold above the extracellular levels after 24 h of incubation. In contrast, single-base mutated variants or random sequence control oligonucleotides that could not form the compactly folded structure had markedly reduced half-lives (t 1 ⁄2 from ϳ3 to 7 min), low cellular uptake, and no sequencespecific anti-HIV-1 activity. These data suggest that the tertiary structure of an oligonucleotide is a key determinant of its nuclease resistance, cellular uptake kinetics, and biological efficacy.Guanine-rich nucleic acid strands, under physiological salt and pH conditions, can adopt a higher order, thermodynamically stable conformation containing square-planar arrangement of four guanines that are hydrogen-bonded in the Hoogsteen manner and stabilized by a monovalent cation (1-4). Depending upon the base composition, sequence, and concentration of the nucleic acids, guanine quartet-containing structures (or G-quartets) 1 can be generated from DNA or RNA, either by the intramolecular folding of a single G-rich strand, or by the association of multiple strands (1-7). Believed to be ubiquitous in nature, G-quartets are proposed to participate in diverse biological processes including the modulation of telomere activity, dimerization of HIV RNA, and site-specific genetic recombination in immunoglobulin switch regions (5-9). In addition, using a combination of rational drug design and combinatorial screening methods, several biologically active oligonucleotides have been described, each of unique specificity and the potential to form G-quartet motifs (10 -15). In particular, we have identified a family of deoxyguanosine-and thymidine-rich (deoxyribo)oligonucleotides that are potent inhibitors of HIV-1 expression in standardized cell culture-based assays (16,17). One such inhibitor is T30175, a 17-mer oligonucleotide synthesized with a natural phosphodiester backbone (Table I). A more potent version, T30177, has the same sequence, but contains a single phosphorothioate internucleosid...
Molecular fusions of CD4, the receptor for human immunodeficiency virus (HIV), with immunoglobulin (termed CD4 immunoadhesins) possess both the gp120-binding and HIV-blocking properties of recombinant soluble CD4, and certain properties of IgG, notably long plasma half-life and Fc receptor binding. Here we show that a CD4 immunoadhesin can mediate antibody-dependent cell-mediated cytotoxicity (ADCC) towards HIV-infected cells, although, unlike natural anti-gp120 antibodies, it does not allow ADCC towards uninfected CD4-expressing cells that have bound soluble gp120 to the CD4 on their surface. In addition, CD4 immunoadhesin, like natural IgG molecules, is efficiently transferred across the placenta of a primate. These observations have implications for the therapeutic application of CD4 immunoadhesins, particularly in the area of perinatal transmission of HIV infection.
The in-vitro susceptibilities of 120 clinical isolates of yeasts to liposomal nystatin were compared with those to amphotericin B lipid complex (ABLC), liposomal amphotericin B (LAB), amphotericin B cholesteryl sulphate (ABCD), amphotericin B desoxycholate, nystatin, fluconazole and itraconazole. Yeast isolates examined included strains of Candida albicans, Candida parapsilosis, Candida glabrata, Candida krusei, Candida guilliermondii, Candida tropicalis, Candida kefyr, Candida viswanathii, Candida famata, Candida rugosa, Rhodotorula rubra, Trichosporon spp., Cryptococcus laurentii and Cryptococcus neoformans. The mean MICs for all strains examined were: liposomal nystatin 0.96 mg/L; nystatin 0.54 mg/L; ABLC 0.65 mg/L; LAB 1.07 mg/L; ABCD 0.75 mg/L; amphotericin B 0.43 mg/L; fluconazole 5.53 mg/L; and itraconazole 0.33 mg/L. No significant differences were seen between the activity of liposomal nystatin and the polyene drugs or itraconazole, but liposomal nystatin was more active than fluconazole. MICs were lower than the reported blood concentrations following therapeutic doses of this drug, indicating the potential for a therapeutic use of liposomal nystatin in humans. These results indicate good activity in vitro against medically important yeasts, which compares favourably with the activities of other currently available antifungal drugs. Liposomal nystatin may have a role in the treatment of disseminated and systemic mycoses.
Inhibins and activins are produced by a variety of tissues and may have important endocrine and paracrine roles in development, reproduction, and hematopoiesis. However, little is known regarding the physical properties or concentrations of inhibin and activin in biological fluids. Binding proteins for inhibin or activin in serum or at production or target sites may have important implications for restricting the bioactivity of these hormones and may alter the immunoreactivity of these molecules in biological fluids. The objective of this study was to identify inhibin- and activin-binding proteins in human serum (HS) and follicular fluid (hFF) and determine the ability of these proteins to alter biological or immunological activity. In HS, [125I]activin and inhibin bound to a protein identified as alpha 2-macroglobulin (alpha 2M) using three criteria: 1) [125I]inhibin and activin bind purified alpha 2M, but not several other serum proteins tested; 2) complexes formed by [125I]inhibin and activin in HS and in the presence of purified alpha 2M elute with similar retention times on HPLC; and 3) preadsorption of HS with alpha 2M antiserum inhibits inhibin and activin binding to this protein while antiserum directed against follistatin or other serum proteins had no effect. A small amount of a lower mol wt [125I]activin-follistatin complex was also found in HS. This complex eluted with a retention time similar to that of activin bound to purified porcine follistatin. Binding of inhibin to follistatin could not be detected in HS. In contrast, follistatin was the major binding protein of both activin and inhibin in hFF. Concentrations up to 100 micrograms/ml purified alpha 2M had no effect on the bioactivity or immunoreactivity of either inhibin or activin. In contrast, follistatin inhibited both activin-stimulated pituitary FSH release and K562 hemoglobin production as well as antiserum binding in a specific activin-A immunoassay. Follistatin did not interfere with inhibin immunodetection. These data indicate that two inhibin- and activin-binding proteins are present in different relative amounts in HS and hFF, alpha 2M, the primary binding protein in HS, did not alter inhibin or activin bio- or immunoactivity under the conditions of these experiments, while follistatin, the major binding protein in hFF, may mask activin's bio- and immunoactivities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.