Impending extinction of the world’s primates due to human activities; immediate global attention is needed to reverse the trend.
For most mammals, including nonhuman primates, diet composition varies temporally in response to differences in food availability. Because diet influences gut microbiota composition, it is likely that the gut microbiota of wild mammals varies in response to seasonal changes in feeding patterns. Such variation may affect host digestive efficiency and, ultimately, host nutrition. In this study, we investigate the temporal variation in diet and gut microbiota composition and function in two groups (N = 13 individuals) of wild Mexican black howler monkeys (Alouatta pigra) over a 10-month period in Palenque National Park, Mexico. Temporal changes in the relative abundances of individual bacterial taxa were strongly correlated with changes in host diet. For example, the relative abundance of Ruminococcaceae was highest during periods when energy intake was lowest, and the relative abundance of Butyricicoccus was highest when young leaves and unripe fruit accounted for 68 % of the diet. Additionally, the howlers exhibited increased microbial production of energy during periods of reduced energy intake from food sources. Because we observed few changes in howler activity and ranging patterns during the course of our study, we propose that shifts in the composition and activity of the gut microbiota provided additional energy and nutrients to compensate for changes in diet. Energy and nutrient production by the gut microbiota appears to provide an effective buffer against seasonal fluctuations in energy and nutrient intake for these primates and is likely to have a similar function in other mammal species.
Primates of the subfamily Callitrichinae (Callimico, Callithrix, Leontopithecus, and Saguinus) are small-bodied New World monkeys (105-700 g) possessing clawlike nails on all manual and pedal digits excluding the hallux. Specialized nails in these genera serve a critical function in feeding by enabling tamarins and marmosets to cling to trunks and other large vertical supports while exploiting food resources. Within the subfamily, there is evidence of at least four distinct large-branch feeding patterns. These include (1) seasonal exudate feeding and occasional trunk foraging (many Saguinus spp.); (2) exploitation of bark surface insects and the use of trunks as a platform to locate terrestrial prey (Saguinus fuscicollis, S. nigricollis, and Callimico); (3) manipulative foraging and bark stripping to locate concealed insects and small vertebrates (Leontopithecus); and (4) tree gouging and year-round exudate feeding (many Callithrix). Large-branch feeding and the use of vertical clinging postures appear to be a primary adaptation among virtually all callitrichines, distinguishing them ecologically from other platyrrhine taxa. Given the anatomy and behavior of extant callitrichines, Saguinus appears to be the most ecologically generalized member of this subfamily, and species of this genus may provide useful models for reconstructing the feeding and foraging adaptations of early callitrichines.
Colobines are a unique group of Old World monkeys that principally eat leaves and seeds rather than fruits and insects. We report the sequencing at 146× coverage, de novo assembly and analyses of the genome of a male golden snub-nosed monkey (Rhinopithecus roxellana) and resequencing at 30× coverage of three related species (Rhinopithecus bieti, Rhinopithecus brelichi and Rhinopithecus strykeri). Comparative analyses showed that Asian colobines have an enhanced ability to derive energy from fatty acids and to degrade xenobiotics. We found evidence for functional evolution in the colobine RNASE1 gene, encoding a key secretory RNase that digests the high concentrations of bacterial RNA derived from symbiotic microflora. Demographic reconstructions indicated that the profile of ancient effective population sizes for R. roxellana more closely resembles that of giant panda rather than its congeners. These findings offer new insights into the dietary adaptations and evolutionary history of colobine primates.Knowledge of the patterns and processes underlying the evolution of alternative dietary strategies in nonhuman primates is critical to understanding hominin evolution, nutritional ecology and applications in biomedicine 1 . Colobines, a group of Old World monkeys, serve as an important model organism for studying the evolution of the primate diet because of their adaptation to folivory: they primarily eat leaves and seeds rather than fruits and insects as their major food source. In their specialized and compartmentalized stomachs, colobines allow symbiotic bacteria in the foregut to ferment structural carbohydrates and then recover nutrients by digesting the bacteria 2 . This strategy is similar to that used by other foregut fermenters found in an evolutionarily distantly related group of mammals (for example, artiodactyls). Although a number of primate genomes have been sequenced thus far, high-quality genome sequence information is absent for Asian and African colobines, a key group for elucidating the evolution and adaptation of primates as a whole. Snub-nosed monkeys (Rhinopithecus species) are a group of endangered colobines, which were once widely distributed in Asia but are now limited to mountain forests in China and Vietnam 3 (Supplementary Fig. 1).The golden snub-nosed monkey (GSM, R. roxellana) is recognized as an iconic endangered species in China for its golden coat, blue facial coloration, snub nose and specialized life history. Among its congeners, the black-white snub-nosed monkey (R. bieti), endemic to the Tibetan plateau, has the highest altitudinal distribution (>4,000 m above sea level) of any nonhuman primate. Given the above features and the fact that Rhinopithecus species consume difficult-to-digest foods that contain tannins (for example, leaves and pine seeds), we expected to identify genetic adaptations that enhance the breakdown of toxins, improve the regulation of energy metabolism and facilitate the digestion of symbiotic microbacteria. RESULTS Genomic sequences and the accumulation of...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.