Movement in the context of species distribution models (SDMs) generally refers to a species’ ability to access suitable habitat. Movement ability can be determined by some combination of dispersal constraints or migration rates, landscape factors such as patch configuration, disturbance, and barriers, and demographic factors related to age at maturity, mortality, and fecundity. Including movement ability can result in more precise projections that help to distinguish suitable habitat that is or can be potentially occupied, from suitable habitat that is inaccessible. While most SDM studies have ignored movement or conceptualized it in overly simplistic ways (e.g. no dispersal versus unlimited dispersal), it is increasingly important to incorporate realistic information on movement ability, particularly for studies that aim to project future distributions such as climate change forecasting and invasive species applications. This progress report addresses the increasingly complex ways in which movement has been incorporated in SDM and outlines directions for further study.
Rooftop solar photovoltaics currently account for 40% of the global solar photovoltaics installed capacity and one-fourth of the total renewable capacity additions in 2018. Yet, only limited information is available on its global potential and associated costs at a high spatiotemporal resolution. Here, we present a high-resolution global assessment of rooftop solar photovoltaics potential using big data, machine learning and geospatial analysis. We analyse 130 million km2 of global land surface area to demarcate 0.2 million km2 of rooftop area, which together represent 27 PWh yr−1 of electricity generation potential for costs between 40–280 $ MWh−1. Out of this, 10 PWh yr−1 can be realised below 100 $ MWh−1. The global potential is predominantly spread between Asia (47%), North America (20%) and Europe (13%). The cost of attaining the potential is lowest in India (66 $ MWh−1) and China (68 $ MWh−1), with USA (238 $ MWh−1) and UK (251 $ MWh−1) representing some of the costliest countries.
Insect pests now pose a greater threat to crop production given the recent emergence of insecticide resistance, the removal of effective compounds from the market (e.g. neonicotinoids) and the changing climate that promotes successful overwintering and earlier migration of pests. As surveillance tools, predictive models are important to mitigate against pest outbreaks. Currently they provide decision support on species emergence, distribution, and migration patterns and their use effectively gives growers more time to take strategic crop interventions such as delayed sowing or targeted insecticide use. Existing techniques may have met their optimal usefulness, particularly in complex systems and changing climates. Machine learning (ML) arguably is an advance over current capabilities because it has the potential to efficiently identify the most informative timewindows whilst simultaneously improving species predictions. In doing so, ML is likely to advance the length of any integrated pest management opportunity when growers can intervene. As an example, we studied the migration of 51 species of aphids, which include some of the most economically important pests worldwide. We used a combination of entropy and C5.0 boosted decision trees to identify the most informative time windows to link meteorological variables to aphid migration patterns across the UK. Decision trees significantly improved the accuracy of first flight prediction by 20% compared to general additive models; further, meteorological variables that were selected by entropy significantly improved the accuracy by a further 3-5% compared to expert derived variables. Coarser (e.g. monthly) weather variables resulted in similar accuracies to finer (e.g. daily) variables but the most accurate model included multiple temporal resolutions with different period lengths. This combined resolution model alone highlights the ability of machine learning to accurately predict complex relationships between species and their meteorological drivers, largely beyond the experience of experts in the field. Finally, we identified the potential of these models to predict long-term first flight patterns in which machine learning attained equally high predictive ability as shorter-term forecasts. Whilst machine learning is a statistical advance, it is not necessarily a panacea: experts will be needed to underpin results with a mechanistic understanding, thus avoiding spurious relationships. The results of this study should provide researchers with an automated methodology to derive and select the most appropriate environmental variables when predicting ecological phenomena, while simultaneously improving the accuracy of such models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.