Understanding the cell-cell interactions that control CNS development and function has long been limited by the lack of methods to cleanly separate neural cell types. Here we describe methods for the prospective isolation and purification of astrocytes, neurons, and oligodendrocytes from developing and mature mouse forebrain. We used FACS (fluorescent-activated cell sorting) to isolate astrocytes from transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of an S100 promoter. Using Affymetrix GeneChip Arrays, we then created a transcriptome database of the expression levels of Ͼ20,000 genes by gene profiling these three main CNS neural cell types at various postnatal ages between postnatal day 1 (P1) and P30. This database provides a detailed global characterization and comparison of the genes expressed by acutely isolated astrocytes, neurons, and oligodendrocytes. We found that Aldh1L1 is a highly specific antigenic marker for astrocytes with a substantially broader pattern of astrocyte expression than the traditional astrocyte marker GFAP. Astrocytes were enriched in specific metabolic and lipid synthetic pathways, as well as the draper/Megf10 and Mertk/ integrin ␣ v  5 phagocytic pathways suggesting that astrocytes are professional phagocytes. Our findings call into question the concept of a "glial" cell class as the gene profiles of astrocytes and oligodendrocytes are as dissimilar to each other as they are to neurons. This transcriptome database of acutely isolated purified astrocytes, neurons, and oligodendrocytes provides a resource to the neuroscience community by providing improved cell-type-specific markers and for better understanding of neural development, function, and disease.
A simple and efficient method for synthesizing pure single stranded RNAs of virtually any structure is described. This in vitro transcription system is based on the unusually specific RNA synthesis by bacteriophage SP6 RNA polymerase which initiates transcription exclusively at an SP6 promoter. We have constructed convenient cloning vectors that contain an SP6 promoter immediately upstream from a polylinker sequence. Using these SP6 vectors, optimal conditions have been established for in vitro RNA synthesis. The advantages and uses of SP6 derived RNAs as probes for nucleic acid blot and solution hybridizations are demonstrated. We show that single stranded RNA probes of a high specific activity are easy to prepare and can significantly increase the sensitivity of nucleic acid hybridization methods. Furthermore, the SP6 transcription system can be used to prepare RNA substrates for studies on RNA processing (1,5,9) and translation (see accompanying paper).
Serum response factor (SRF) regulates transcription of numerous muscle and growth factor-inducible genes. Because SRF is not muscle specific, it has been postulated to activate muscle genes by recruiting myogenic accessory factors. Using a bioinformatics-based screen for unknown cardiac-specific genes, we identified a novel and highly potent transcription factor, named myocardin, that is expressed in cardiac and smooth muscle cells. Myocardin belongs to the SAP domain family of nuclear proteins and activates cardiac muscle promoters by associating with SRF. Expression of a dominant negative mutant of myocardin in Xenopus embryos interferes with myocardial cell differentiation. Myocardin is the founding member of a class of muscle transcription factors and provides a mechanism whereby SRF can convey myogenic activity to cardiac muscle genes.
We describe a method for the synthesis of microgram quantities of eucaryotic messenger RNAs. Injection into the cytoplasm of frog oocytes and addition to wheat germ extracts show that these synthetic RNAs function efficiently as messenger RNAs. We confirm that a 5' cap on the mRNA is essential for translation in injected oocytes and show that most of the 3' flanking region, including the poly A tail, can be deleted without the abolition of protein synthesis. The method of mRNA synthesis involves in vitro transcription of cDNAs which have been cloned into SP6 vectors (described in the accompanying paper). This method enables one to produce large amounts of mRNA and consequently protein from any cDNA clone.
Summary The vascular system is essential for embryonic development and adult life. Aberrant vascularization is associated with numerous diseases, including cancer, atherosclerosis, retinopathy, and stroke. Vascular development begins when mesodermal cells differentiate into endothelial cells, which then form primitive vessels. It has been hypothesized that endothelial-specific gene expression may be regulated combinatorially, but the transcriptional mechanisms governing vascular gene expression remain incompletely understood. Here, we identify a transcriptional code, consisting of Forkhead and Ets factors, which is required and sufficient for vascular development and endothelial gene expression through combinatorial activation of a composite cis-acting element. We show that the presence of this FOX:ETS motif is an effective predictor of endothelial-specific enhancers. These studies establish a paradigm in which two broadly expressed classes of transcription factors regulate tissue specific expression combinatorially through a single composite cis-acting element. This mechanism has broad implications for understanding differentiation and gene expression in many tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.