Bacteriophage ϕC31 encodes an integrase, which acts on the phage and host attachment sites, attP and attB, to form an integrated prophage flanked by attL and attR. In the absence of accessory factors, ϕC31 integrase cannot catalyse attL x attR recombination to excise the prophage. To understand the mechanism of directionality, mutant integrases were characterized that were active in excision. A hyperactive integrase, Int E449K, gained the ability to catalyse attL x attR, attL x attL and attR x attR recombination whilst retaining the ability to recombine attP x attB. A catalytically defective derivative of this mutant, Int S12A, E449K, could form stable complexes with attP/attB, attL/attR, attL/attL and attR/attR under conditions where Int S12A only complexed with attP/attB. Further analysis of the Int E449K-attL/attR synaptic events revealed a preference for one of the two predicted synapse structures with different orientations of the attL/attR sites. Several amino acid substitutions conferring hyperactivity, including E449K, were localized to one face of a predicted coiled-coil motif in the C-terminal domain. This work shows that a motif in the C-terminal domain of ϕC31 integrase controls the formation of the synaptic interface in both integration and excision, possibly through a direct role in protein–protein interactions.
Most temperate phages encode an integrase for integration and excision of the prophage. Integrases belong either to the lambda Int family of tyrosine recombinases or to a subgroup of the serine recombinases, the large serine recombinases. Integration by purified serine integrases occurs efficiently in vitro in the presence of their cognate (~50 bp) phage and host attachment sites, attP and attB respectively. Serine integrases require an accessory protein, Xis, to promote excision, a reaction in which the products of the integration reaction, attL and attR, recombine to regenerate attP and attB. Unlike other directional recombinases, serine integrases are not controlled by proteins occupying accessory DNA-binding sites. Instead, it is thought that different integrase conformations, induced by binding to the DNA substrates, control protein-protein interactions, which in turn determine whether recombination proceeds. The present review brings together the evidence for this model derived from the studies on phiC31 integrase, Bxb1 integrase and other related proteins.
The integrase (Int) from phage ϕC31 acts on the phage and host-attachment sites, attP and attB, to form an integrated prophage flanked by attL and attR. Excision (attL × attR recombination) is prevented, in the absence of accessory factors, by a putative coiled-coil motif in the C-terminal domain (CTD). Int has a serine recombinase N-terminal domain, required for synapsis of recombination substrates and catalysis. We show here that the coiled-coil motif mediates protein–protein interactions between CTDs, but only when bound to DNA. Although the histidine-tagged CTD (hCTD) was monomeric in solution, hCTD bound cooperatively to three of the recombination substrates (attB, attL and attR). Furthermore, when provided with attP and attB, hCTD brought these substrates together in a synaptic complex. Substitutions in the coiled-coil motif that greatly reduce Int integration activity, L460P and Y475H, prevented CTD–CTD interactions and led to defective DNA binding and no detectable DNA synapsis. A substitution, E449K, in full length Int confers the ability to perform excision in addition to integration as it has gained the ability to synapse attL × attR. hCTDE449K was similar to hCTD in DNA binding but unable to form the CTD synapse suggesting that the CTD synapse is not essential but could be part of the mechanism that controls directionality.
Water, acting as a rogue nucleophile, can disrupt transesterification steps of important phosphoryl transfer reactions in DNA and RNA. We have unveiled this risk, and identified safeguards instituted against it, during strand cleavage and joining by the tyrosine site-specific recombinase Flp. Strand joining is threatened by a latent Flp endonuclease activity (type I) towards the 3 0 -phosphotyrosyl intermediate resulting from strand cleavage. This risk is not alleviated by phosphate electrostatics; neutralizing the negative charge on the scissile phosphate through methylphosphonate (MeP) substitution does not stimulate type I endonuclease. Rather, protection derives from the architecture of the recombination synapse and conformational dynamics within it. Strand cleavage is protected against water by active site electrostatics. Replacement of the catalytic Arg-308 of Flp by alanine, along with MeP substitution, elicits a second Flp endonuclease activity (type II) that directly targets the scissile phosphodiester bond in DNA. MeP substitution, combined with appropriate active site mutations, will be useful in revealing anti-hydrolytic mechanisms engendered by systems that mediate DNA relaxation, DNA transposition, site-specific recombination, telomere resolution, RNA splicing and retrohoming of mobile introns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.