Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems—patient classification, fundamental biological processes and treatment of patients—and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network's prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine.
Deep learning, which describes a class of machine learning algorithms, has recently showed impressive results across a variety of domains. Biology and medicine are data rich, but the data are complex and often ill-understood. Problems of this nature may be particularly well-suited to deep learning techniques. We examine applications of deep learning to a variety of biomedical problems—patient classification, fundamental biological processes, and treatment of patients—and discuss whether deep learning will transform these tasks or if the biomedical sphere poses unique challenges. We find that deep learning has yet to revolutionize or definitively resolve any of these problems, but promising advances have been made on the prior state of the art. Even when improvement over a previous baseline has been modest, we have seen signs that deep learning methods may speed or aid human investigation. More work is needed to address concerns related to interpretability and how to best model each problem. Furthermore, the limited amount of labeled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning powering changes at both bench and bedside with the potential to transform several areas of biology and medicine.
Type-2 (T2) immune responses in airway epithelial cells (AECs) classifies mild–moderate asthma into a T2-high phenotype. We examined whether currently available clinical biomarkers can predict AEC-defined T2-high phenotype within the U-BIOPRED cohort.The transcriptomic profile of AECs obtained from brushings of 103 patients with asthma and 44 healthy controls was obtained and gene set variation analysis used to determine the relative expression score of T2 asthma using a signature from interleukin (IL)-13-exposed AECs.37% of asthmatics (45% nonsmoking severe asthma, n=49; 33% of smoking or ex-smoking severe asthma, n=18; and 28% mild–moderate asthma, n=36) were T2-high using AEC gene expression. They were more symptomatic with higher exhaled nitric oxide fraction (FeNO) and blood and sputum eosinophils, but not serum IgE or periostin. Sputum eosinophilia correlated best with the T2-high signature. FeNO (≥30 ppb) and blood eosinophils (≥300 cells·µL−1) gave a moderate prediction of T2-high asthma. Sputum IL-4, IL-5 and IL-13 protein levels did not correlate with gene expression.T2-high severe asthma can be predicted to some extent from raised levels of FeNO, blood and sputum eosinophil counts, but serum IgE or serum periostin were poor predictors. Better bedside biomarkers are needed to detect T2-high.
Abstract. Studies of species richness have been hampered by the use of methods that fail to account for phylogenetic non‐independence of character states. MacroCAIC is a computer program that extends the method of phylogenetically independent contrasts to encompass species‐richness data. It examines user‐selected characters for correlation with species richness, thus allowing clearer identification of the factors driving large‐scale patterns of diversity.
European Union's Seventh Framework programme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.