We investigate a stochastic evolution equation for the motion of a second grade fluid filling a bounded domain of R 2 . Global existence and uniqueness of strong probabilistic solution is established. In contrast to previous results on this model we show that the sequence of Galerkin approximation converges in mean square to the exact strong probabilistic solution of the problem. We also give two results on the long time behaviour of the solution. Mainly we prove that the strong solution of our stochastic model converges exponentially in mean square to the stationary solution of the time-independent second grade fluids equations if the deterministic part of the external force does not depend on time. If the deterministic forcing term explicitly depends on time, then the strong probabilistic solution decays exponentially in mean square.
Abstract. In this paper we prove the existence and uniqueness of maximal strong (in PDE sense) solution to several stochastic hydrodynamical systems on unbounded and bounded domains of R n , n = 2, 3. This maximal solution turns out to be a global one in the case of 2D stochastic hydrodynamical systems. Our framework is general in the sense that it allows us to solve the Navier-Stokes equations, MHD equations, Magnetic Bénard problems, Boussinesq model of the Bénard convection, Shell models of turbulence and the Leray-α model with jump type perturbation. Our goal is achieved by proving general results about the existence of maximal and global solution to an abstract stochastic partial differential equations with locally Lipschitz continuous coefficients. The method of the proofs are based on some truncation and fixed point methods.
In this paper, we prove several mathematical results related to a system of highly nonlinear stochastic partial differential equations (PDEs). These stochastic equations describe the dynamics of penalised nematic liquid crystals under the influence of stochastic external forces. Firstly, we prove the existence of a global weak solution (in the sense of both stochastic analysis and PDEs). Secondly, we show the pathwise uniqueness of the solution in a 2D domain. In contrast to several works in the deterministic setting we replace the Ginzburg–Landau function
by an appropriate polynomial
and we give sufficient conditions on the polynomial
f
for these two results to hold. Our third result is a maximum principle type theorem. More precisely, if we consider
and if the initial condition
satisfies
, then the solution
also remains in the unit ball.
We initiate the investigation of a stochastic system of evolution partial differential equations modelling the turbulent flows of a second grade fluid filling a bounded domain of R 2 . We establish the global existence of a probabilistic weak solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.