A formalism is introduced for the non-perturbative, purely numerical, solution of the reduced Rayleigh equation (RRE) for the scattering of light from two-dimensional penetrable rough surfaces. Implementation and performance issues of the method, and various consistency checks of it, are presented and discussed. The proposed method is found, within the validity of the Rayleigh hypothesis, to give reliable results. For a nonabsorbing metal surface the conservation of energy was explicitly checked, and found to be satisfied to within 0.03%, or better, for the parameters assumed. This testifies to the accuracy of the approach and a satisfactory discretization. As an illustration, we calculate the full angular distribution of the mean differential reflection coefficient for the scattering of p-or s-polarized light incident on two-dimensional dielectric or metallic randomly rough surfaces defined by (isotropic or anisotropic) Gaussian and cylindrical power spectra. Simulation results obtained by the proposed method agree well with experimentally measured scattering data taken from similar well-characterized, rough metal samples, or to results obtained by other numerical methods.
A fast multichannel Stokes/Mueller polarimeter with no mechanically moving parts has been designed to have close to optimal performance from 430-2000 nm by applying a genetic algorithm. Stokes (Mueller) polarimeters are characterized by their ability to analyze the full Stokes (Mueller) vector (matrix) of the incident light (sample). This ability is characterized by the condition number, κ, which directly influences the measurement noise in polarimetric measurements. Due to the spectral dependence of the retardance in birefringent materials, it is not trivial to design a polarimeter using dispersive components. We present here both a method to do this optimization using a genetic algorithm, as well as simulation results. Our results include fast, broad-band polarimeter designs for spectrographic use, based on 2 and 3 Ferroelectric Liquid Crystals, whose material properties are taken from measured values. The results promise to reduce the measurement noise significantly over previous designs, up to a factor of 4.5 for a Mueller polarimeter, in addition to extending the spectral range.
The plasmonic response of nanoparticles is exploited in many subfields of science and engineering to enhance optical signals associated with probes of nanoscale and subnanoscale entities. We develop a numerical algorithm based on previous theoretical work that addresses the influence of a substrate on the plasmonic response of collections of nanoparticles of spherical shape. Our method is a real space approach within the quasi-static limit that can be applied to a wide range of structures. We illustrate the role of the substrate through numerical calculations that explore single nanospheres and nanosphere dimers fabricated from either a Drude model metal or from silver on dielectric substrates, and from dielectric spheres on silver substrates.
Coral reefs around the world are under threat due to anthropogenic impacts on the environment. It is therefore important to develop methods to monitor the status of the reefs and detect changes in the health condition of the corals at an early stage before severe damage occur. In this work, we evaluate underwater hyperspectral imaging as a method to detect changes in health status of both orange and white color morphs of the coral species Lophelia pertusa . Differing health status was achieved by exposing 60 coral samples to the toxic compound 2-methylnaphthalene in concentrations of 0 mg L −1 to 3.5 mg L −1 . A machine learning model was utilized to classify corals according to lethal concentration (LC) levels LC5 (5% mortality) and LC25 (25% mortality), solely based on their reflectance spectra. All coral samples were classified to correct concentration group. This is a first step towards developing a remote sensing technique able to assess environmental impact on deep-water coral habitats over larger areas.
The transmission of polarized light through a two-dimensional randomly rough interface between two dielectric media has been much less studied, by any approach, than the reflection of light from such an interface. We have derived a reduced Rayleigh equation for the transmission amplitudes when p-or s-polarized light is incident on this type of interface, and have obtained rigorous, purely numerical, nonperturbative solutions of it. The solutions are used to calculate the transmissivity and transmittance of the interface, the mean differential transmission coefficient, and the full angular distribution of the intensity of the transmitted light. These results are obtained for both the case where the medium of incidence is the optically less dense medium and in the case where it is the optically more dense medium. Optical analogues of Yoneda peaks observed in the scattering of x-rays from metallic and non-metallic surfaces are present in the results obtained in the former case. For p-polarized incident light we observe Brewster scattering angles, angles at which the diffuse transmitted intensity is zero in a single-scattering approximation, which depend on the angle of incidence in contrast to the Brewster angle for flat-surface reflection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.