We leveraged the largely untapped resource of electronic health record data to address critical clinical and epidemiological questions about Coronavirus Disease 2019 (COVID-19). To do this, we formed an international consortium (4CE) of 96 hospitals across five countries (www.covidclinical.net). Contributors utilized the Informatics for Integrating Biology and the Bedside (i2b2) or Observational Medical Outcomes Partnership (OMOP) platforms to map to a common data model. The group focused on temporal changes in key laboratory test values. Harmonized data were analyzed locally and converted to a shared aggregate form for rapid analysis and visualization of regional differences and global commonalities. Data covered 27,584 COVID-19 cases with 187,802 laboratory tests. Case counts and laboratory trajectories were concordant with existing literature. Laboratory tests at the time of diagnosis showed hospital-level differences equivalent to country-level variation across the consortium partners. Despite the limitations of decentralized data generation, we established a framework to capture the trajectory of COVID-19 disease in patients and their response to interventions.
We leveraged the largely untapped resource of electronic health record data to address critical clinical and epidemiological questions about Coronavirus Disease 2019 . To do this, we formed an international consortium (4CE) of 96 hospitals across 5 countries (www.covidclinical.net). Contributors utilized the Informatics for Integrating Biology and the Bedside (i2b2) or Observational Medical Outcomes Partnership (OMOP) platforms to map to a common data model. The group focused on comorbidities and temporal changes in key laboratory test values. Harmonized data were analyzed locally and converted to a shared aggregate form for rapid analysis and visualization of regional differences and global commonalities. Data covered 27,584 COVID-19 cases with 187,802 laboratory tests. Case counts and laboratory trajectories were concordant with existing literature. Laboratory tests at the time of diagnosis showed hospital-level differences equivalent to country-level variation across the consortium partners. Despite the limitations of decentralized data generation, we established a framework to capture the trajectory of COVID-19 disease in patients and their response to interventions.
Introduction The Consortium for Clinical Characterization of COVID-19 by EHR (4CE) is an international collaboration addressing COVID-19 with federated analyses of electronic health record (EHR) data. Objective We sought to develop and validate a computable phenotype for COVID-19 severity. Methods Twelve 4CE sites participated. First we developed an EHR-based severity phenotype consisting of six code classes, and we validated it on patient hospitalization data from the 12 4CE clinical sites against the outcomes of ICU admission and/or death. We also piloted an alternative machine-learning approach and compared selected predictors of severity to the 4CE phenotype at one site. Results The full 4CE severity phenotype had pooled sensitivity of 0.73 and specificity 0.83 for the combined outcome of ICU admission and/or death. The sensitivity of individual code categories for acuity had high variability - up to 0.65 across sites. At one pilot site, the expert-derived phenotype had mean AUC 0.903 (95% CI: 0.886, 0.921), compared to AUC 0.956 (95% CI: 0.952, 0.959) for the machine-learning approach. Billing codes were poor proxies of ICU admission, with as low as 49% precision and recall compared to chart review. Discussion We developed a severity phenotype using 6 code classes that proved resilient to coding variability across international institutions. In contrast, machine-learning approaches may overfit hospital-specific orders. Manual chart review revealed discrepancies even in the gold-standard outcomes, possibly due to heterogeneous pandemic conditions. Conclusion We developed an EHR-based severity phenotype for COVID-19 in hospitalized patients and validated it at 12 international sites.
Introduction. The Consortium for Clinical Characterization of COVID-19 by EHR (4CE) includes hundreds of hospitals internationally using a federated computational approach to COVID-19 research using the EHR. Objective. We sought to develop and validate a standard definition of COVID-19 severity from readily accessible EHR data across the Consortium. Methods. We developed an EHR-based severity algorithm and validated it on patient hospitalization data from 12 4CE clinical sites against the outcomes of ICU admission and/or death. We also used a machine learning approach to compare selected predictors of severity to the 4CE algorithm at one site. Results. The 4CE severity algorithm performed with pooled sensitivity of 0.73 and specificity 0.83 for the combined outcome of ICU admission and/or death. The sensitivity of single code categories for acuity were unacceptably inaccurate - varying by up to 0.65 across sites. A multivariate machine learning approach identified codes resulting in mean AUC 0.956 (95% CI: 0.952, 0.959) compared to 0.903 (95% CI: 0.886, 0.921) using expert-derived codes. Billing codes were poor proxies of ICU admission, with 49% precision and recall compared against chart review at one partner institution. Discussion. We developed a proxy measure of severity that proved resilient to coding variability internationally by using a set of 6 code classes. In contrast, machine-learning approaches may tend to overfit hospital-specific orders. Manual chart review revealed discrepancies even in the gold standard outcomes, possibly due to pandemic conditions. Conclusion. We developed an EHR-based algorithm for COVID-19 severity and validated it at 12 international sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.