International audienceA micro-resonator based on porous silicon ridge waveguides is implemented by a large scale standard photolithography process to obtain a low cost and sensitive sensor based on volume detection principle instead of the evanescent one usually used. The porous nature of the ridge waveguides allows the target molecules to be infiltrated in the core and to be detected by direct interaction with the propagated light. Racetrack resonator with radius of 100 µm and a coupling length of 70 µm is optically characterized for the volume detection of different concentrations of glucose. A high sensitivity of 560 nm/RIU is reached with only one micro-resonator and a limit of detection of 8.10-5 RIU, equivalent to a glucose concentration of 0.7 g/L, is obtained
We demonstrate the fabrication of a Vernier effect SU8/PMATRIFE polymer optical biosensor with high homogeneous sensitivity using a standard photolithography process. The sensor is based on one micro-resonator embedded on each arm of a Mach-Zehnder interferometer. Measurements are based on the refractive index variation of the optical waveguide superstrate with different concentrations of glucose solutions. The sensitivity of the sensor has been measured as 17558 nm/RIU and the limit of detection has been estimated to 1.1.10 RIU.
International audienceA new combination of porous silicon and polymer optical waveguides is investigated for two different designs of Vernier effect based sensors for the surface detection of Bovine Serum Albumin molecules (BSA). The hybrid structures studied consist of two cascaded micro-resonators for one and a micro-resonator cascaded with a Mach-Zehnder for the other. Because of its high specific surface and bio-compatibility, we use porous silicon to implement the waveguides in the sensing part of the sensor into which BSA molecules are grafted. Polymer waveguides are then used for the reference part of the sensor because of their low optical losses. We consider the opto-geometric parameters of both waveguides for single mode propagation. Finally, optimized designs, taking into account standard experimental wavelength shift measurement limitation are presented for both structures. We demonstrate a theoretical Limit Of Detection (LOD) of 0.019 pg.mm-2 and a sensitivity of 12.5 nm/(pg.mm-2) with these hybrid sensors. To our knowledge, these values are lower by a factor of 8 for the LOD and higher, by a factor of 200 for the sensitivity, as compared to state of the art Vernier effect biosensors
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.