Images created from noise filtered to have an approximately 1/f amplitude spectrum were altered by adding excess energy concentrated at various spatial frequencies. The effects of this manipulation on judgements of visual discomfort were studied. Visual noise with a 1/f amplitude spectrum (typical of natural images) was judged more comfortable than any image with a relative increase in contrast energy within a narrow spatial frequency band. A peak centred on 0.375-1.5cycles/degree of spatial frequency was consistently judged as more uncomfortable than a peak at a higher spatial frequency. This finding was robust to slight differences in eccentricity, and when stimuli were matched for perceived contrast across spatial frequency. These findings are consistent with the idea that deviation from the statistics of natural images could cause discomfort because the visual system is optimised to encode images with the particular statistics typical of natural scenes.
BackgroundMigraine is a common neurological condition that often involves differences in visual processing. These sensory processing differences provide important information about the underlying causes of the condition, and for the development of treatments. Review of Psychophysical LiteraturePsychophysical experiments have shown consistent impairments in contrast sensitivity, orientation acuity, and the perception of global form and motion. They have also established that the addition of task-irrelevant visual noise has a greater effect, and that surround suppression, masking and adaptation are all stronger in migraine. Theoretical Signal Processing ModelWe propose utilising an established model of visual processing, based on signal processing theory, to account for the behavioural differences seen in migraine. This has the advantage of precision and clarity, and generating clear, falsifiable predictions. ConclusionIncreased effects of noise and differences in excitation and inhibition can account for the differences in migraine visual perception. Consolidating existing research and creating a unified, defined theoretical account is needed to better understand the disorder.
Evidence from macaques [1] and humans [2, 3] has shown that back projections from extrastriate areas to the primary visual area (V1) determine whether visual awareness will arise. For example, reentrant projections from the visual motion area (V5) to V1 are considered to be critical for awareness of motion [2, 3]. If these projections are also instrumental to functional processing of moving stimuli [4-8], then increasing synaptic efficacy in V5-V1 connections should induce functionally relevant short-term plastic changes, resulting in enhanced perception of visual motion. Using transcranial magnetic stimulation (TMS), we applied a novel cortico-cortical paired associative stimulation (ccPAS) protocol to transiently enhance visual motion sensitivity and demonstrate both the functional relevance of V5-V1 reentrant projections to motion perception and their plasticity. Specifically, we found that ccPAS aimed at strengthening reentrant connectivity from V5 to V1 (but not in the opposite direction) enhanced the human ability to perceive coherent visual motion. This perceptual enhancement followed the temporal profile of Hebbian plasticity [9-18] and was observed only when an optimal timing of 20 ms between TMS pulses [2, 3, 5, 6] was used, not when TMS pulses were delivered synchronously. Thus, plastic change is critically dependent on both the direction and timing of connectivity; if either of these requirements was not met, perceptual enhancement did not take place. We therefore provide novel causal evidence that V5-V1 back projections, instrumental to motion perception, are functionally malleable. These findings have implications for theoretical models of visual awareness and for the rehabilitation of visual deficits.
Models of attention and emotion assign a special status to the processing of threat. While evidence for threat-related attentional bias in highly anxious individuals is robust, effects in the normal population are mixed. An important explanation for the absence of threat-related attentional bias in nonanxious individuals may relate to the spatial frequency components of stimuli. Here we report behavioral data from two experiments examining the relationship between spatial frequency components of emotional and neutral faces and fast saccadic orienting behavior. In Experiment 1 participants had to saccade toward a single face, filtered to include mostly low, high or broad spatial frequencies (LSF, HSF or BSF), posing a fearful, happy or neutral expression presented for 20 ms in the periphery. At BSF a general emotional effect was found whereby saccadic responses were faster for fearful and happy faces relative to neutral, with no significant differences between fearful and happy faces. At LSF both fearful and happy faces had shorter saccadic latencies in comparison to neutral, demonstrating an emotional bias consistent with the BSF data. However, at LSF fearful faces resulted in significantly faster saccades than happy faces indicating that this bias was stronger for threat-related faces. There was no difference in saccadic responses between any emotions at HSF. Experiment 2 showed that the emotional bias diminished for inverted stimuli suggesting that the results were not attributable to low-level image properties. The findings suggest an overall advantage in the oculomotor system for orientation to emotional stimuli and at LSF in particular, a significantly faster localization of threat conveyed by the face stimuli in all individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.