The analysis of longitudinal data in education is becoming more prevalent given the nature of testing systems constructed for No Child Left Behind Act (NCLB). However, constructing the longitudinal data files remains a significant challenge. Students move into new schools, but in many cases the unique identifiers (ID) that should remain constant for each student change. As a result, different students frequently share the same ID, and merging records for an ID that is erroneously assigned to different students clearly becomes problematic. In small data sets, quality assurance of the merge can proceed through human reviews of the data to ensure all merged records are properly joined. However, in data sets with hundreds of thousands of cases, quality assurance via human review is impossible. While the record linkage literature has many applications in other disciplines, the educational measurement literature lacks details of formal protocols that can be used for quality assurance procedures for longitudinal data files. This article presents an empirical quality assurance procedure that may be used to verify the integrity of the merges performed for longitudinal analysis. We also discuss possible extensions that would permit merges to occur even when unique identifiers are not available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.