The stromal microenvironment of tumors, which is a mixture of hematopoietic and mesenchymal cells, suppresses immune control of tumor growth. A stromal cell type that was first identified in human cancers expresses fibroblast activation protein-α (FAP). We created a transgenic mouse in which FAP-expressing cells can be ablated. Depletion of FAP-expressing cells, which made up only 2% of all tumor cells in established Lewis lung carcinomas, caused rapid hypoxic necrosis of both cancer and stromal cells in immunogenic tumors by a process involving interferon-γ and tumor necrosis factor-α. Depleting FAP-expressing cells in a subcutaneous model of pancreatic ductal adenocarcinoma also permitted immunological control of growth. Therefore, FAP-expressing cells are a nonredundant, immune-suppressive component of the tumor microenvironment.
Loss of iRhom2, a catalytically inactive rhomboid-like protein, blocks maturation of TACE/ADAM17 in macrophages, resulting in defective shedding of the cytokine tumor necrosis factor. Apart from the resulting inflammatory defects, iRhom2-null mice appear normal: they do not show the several defects seen in TACE knockouts, suggesting that TACE maturation is independent of iRhom2 in cells other than macrophages. Here we show that the physiological role of iRhoms is much broader. iRhom1 knockout mice die within 6 weeks of birth. They show a severe phenotype, with defects in several tissues including highly penetrant brain haemorrhages. The non-overlapping phenotypes imply that iRhom 1 and 2 have distinct physiological roles, although at a cellular level both promote the maturation of TACE (but not other ADAM proteases). Both iRhoms are co-expressed in many contexts where TACE acts. We conclude that all TACE activity, constitutive and regulated, requires iRhom function. iRhoms are therefore essential and specific regulators of TACE activity, but our evidence also implies that they must have additional physiologically important clients.
Proteolytic cleavage and release from the cell surface of membrane-tethered ligands is an important mechanism of regulating intercellular signalling. TACE is a major shedding protease, responsible for the liberation of the inflammatory cytokine TNFα and ligands of the epidermal growth factor receptor. iRhoms, catalytically inactive members of the rhomboid-like superfamily, have been shown to control the ER-to-Golgi transport and maturation of TACE. Here, we reveal that iRhom2 remains associated with TACE throughout the secretory pathway, and is stabilised at the cell surface by this interaction. At the plasma membrane, ERK1/2-mediated phosphorylation and 14-3-3 protein binding of the cytoplasmic amino-terminus of iRhom2 alter its interaction with mature TACE, thereby licensing its proteolytic activity. We show that this molecular mechanism is responsible for triggering inflammatory responses in primary mouse macrophages. Overall, iRhom2 binds to TACE throughout its lifecycle, implying that iRhom2 is a primary regulator of stimulated cytokine and growth factor signalling.DOI:
http://dx.doi.org/10.7554/eLife.23968.001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.