The influence of microperfusion and fat suppression technique on the apparent diffusion coefficient (ADC) values obtained with diffusion weighted imaging (DWI) of normal fibroglandular breast tissue was investigated. Seven volunteers (14 breasts) were scanned using diffusion weighting factors (b values) up to 1600 s/mm(2) and the four different fat suppression techniques: STIR, fat saturation, SPAIR, and Water Excitation. The relationship between the logarithmic DW attenuation curves and b was linear for b values up to 600 s/mm(2) (R(2) > 0.999). Small differences were noted between the ADC values obtained with the various fat suppression methods, especially at the higher b values. Water Excitation had the highest mean SNR, exceeding STIR (p = 0.03) though not significantly different from fat saturation and SPAIR. In conclusion, the ADC of fibroglandular breast tissue is not influenced by microperfusion and Water Excitation is recommended because it yielded the best SNR values. These factors may be crucial in the differentiation between benign and malignant lesions.
The reversibility and linearity of the T2 -temperature dependence of adipose tissue allows for the monitoring of the temperature in the subcutaneous adipose tissue layers.
The T1 and T2 temperature dependence of female breast adipose tissue was investigated at 1.5 T in order to evaluate the applicability of relaxation-based MR thermometry in fat for the monitoring of thermal therapies in the breast. Relaxation times T1 , T2 and T2TSE (the apparent T2 measured using a turbo spin echo readout sequence) were measured in seven fresh adipose breast samples for temperatures from 25 to 65 °C. Spectral water suppression was used to reduce the influence of the residual water signal. The temperature dependence of the relaxation times was characterized. The expected maximum temperature measurement errors based on average calibration lines were calculated. In addition, the heating-cooling reversibility was investigated for two samples. The T1 and T2TSE temperature (T) dependence could be fitted well with an exponential function of 1/T. A linear relationship between T2 and temperature was found. The temperature coefficients (mean ± inter-sample standard deviation) of T1 and T2TSE increased from 25 °C (dT1/dT = 5.35 ± 0.08 ms/°C, dT2TSE/dT = 3.82 ± 0.06 ms/°C) to 65 °C (dT1 /dT = 9.50 ± 0.16 ms/°C, dT2TSE/dT = 7.99 ± 0.38 ms/°C). The temperature coefficient of T2 was 0.90 ± 0.03 ms/°C. The temperature-induced changes in the relaxation times were found to be reversible after heating to 65 °C. Given the small inter-sample variation of the temperature coefficients, relaxation-based MR thermometry appears to be feasible in breast adipose tissue, and may be used as an adjunct to proton resonance frequency shift (PRFS) thermometry in aqueous tissue (glandular + tumor).
Replacement of a degenerated vertebral disc with an artificial intervertebral disc (AID) is currently possible, but poses problems, mainly in the force distribution through the vertebral column. Data on the intervertebral disc space geometry will provide a better fit of the prosthesis to the vertebrae, but current literature on vertebral disc geometry is very scarce or not suitable. In this study, existing CT-scans of 77 patients were analyzed to measure the intervertebral disc and vertebral endplate geometry of the lumbar spine. Ten adjacent points on both sides of the vertebrae (S1-superior to T12-inferior) and sagittal and transverse diameters were measured to describe the shape of the caudal and cranial vertebral planes of the vertebrae. It was found that the largest endplate depth is located in the middle or posterior regions of the vertebra, that there is a linear relationship between all inferior endplate depths and the endplate location (p < 0.0001) within the spinal column, and that the superior endplate depth increases with age by about 0.01 mm per year (p < 0.02). The wedge angle increases from T12-L1 to L5-S1. The results allow for improvement of the fit of intervertebral disc-prostheses to the vertebrae and optimized force transmission through the vertebral column.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.