The serotonergic system forms a diffuse network within the central nervous system and plays a significant role in the regulation of mood and cognition. Manipulation of tryptophan levels, acutely or chronically, by depletion or supplementation, is an experimental procedure for modifying peripheral and central serotonin levels. These studies have allowed us to establish the role of serotonin in higher order brain function in both preclinical and clinical situations and have precipitated the finding that low brain serotonin levels are associated with poor memory and depressed mood. The gut-brain axis is a bi-directional system between the brain and gastrointestinal tract, linking emotional and cognitive centres of the brain with peripheral functioning of the digestive tract. An influence of gut microbiota on behaviour is becoming increasingly evident, as is the extension to tryptophan and serotonin, producing a possibility that alterations in the gut may be important in the pathophysiology of human central nervous system disorders. In this review we will discuss the effect of manipulating tryptophan on mood and cognition, and discuss a possible influence of the gut-brain axis.
The afferent innervation of the gastrointestinal (GI) tract consists of intrinsic and extrinsic sensory neurons that respond to nutrients, chemicals or mechanical stimuli within the gut lumen. Most stimuli do not interact directly with the afferent nerves but instead activate specialised cells in the epithelium in a process of sensory transduction. It is thought that one of the first steps in this process is the release of serotonin (5-HT) from the enterochromaffin (EC) cells. The EC cells are a sub-type of enteroendocrine (EE) cells which are found among the enterocytes of the intestinal epithelium. The EC cells are responsible for the production and storage of the largest pool of 5 HT in the body. Released 5-HT can act on the intrinsic nerves and vagal endings. This review will focus on the role of 5-HT in sensory transduction and examine how the EC cell produces and releases 5-HT. We will explore recent developments that have helped to elucidate some of the proteins that allow EC cells to sense the luminal environment. Finally, we will highlight some of the findings from new studies using electrochemical techniques which allow the real-time recording of 5-HT concentrations near to the EC cell.
Responses of myenteric AH and S neurons to local application of chemicals to the mucosa of the guinea pig small intestine were obtained using conventional intracellular recording techniques. Preparations were dissected to reveal the myenteric plexus over one-half of the circumference of the gut with intact mucosa on the the half. Neurons were impaled within the exposed one-half, whereas potential stimulants, in buffered saline, were transiently applied to the mucosa, 1-1.5 mm circumferential from the impalement. The stimulants elicited action potentials (AP) in AH neurons that did not arise from synaptic activity. AH neurons also responded with slow excitatory postsynaptic potentials (EPSP). S neurons were activated synaptically, via fast and slow EPSP, but not nonsynaptically. Mucosal application of solutions of a low pH (3-5) or a high pH (9-11) were both effective stimulants. Solutions of a neutral pH, which was also a control for mild mechanical stimulation, were usually ineffective. Both a short-chain fatty acid, acetate (pH 7.2), and 5-hydroxytryptamine elicited responses in each neuronal type. We conclude that myenteric AH neurons of the guinea pig distal ileum are primary afferent neurons that respond to a variety of mucosally applied chemical stimuli with burst of AP. In addition, the physiologically evoked transmission of slow EPSP to AH neurons suggests that primary afferent neurons interconnect in a self-reinforcing network. S neurons are second or higher order neurons in the reflex pathways.
Isolated longitudinal muscle‐myenteric plexus preparations from guinea‐pig ileum were used to investigate the activity of myenteric neurons when the tissue was stretched in the circumferential direction. Membrane potentials were recorded via flexibly mounted intracellular recording electrodes containing Neurobiotin in 1 M KCl. The preparations were stretched to constant widths (+20 % and +40 % beyond slack width). Multipolar neurons (Dogiel type II morphology) discharged spontaneous action potentials and proximal process potentials during maintained stretching, three of twenty‐one at +20 % stretch and seven of nine at +40 % stretch. At the maximum extent of stretch tried, +40 % beyond slack tissue width, action potentials in Dogiel type II neurons occurred at 10‐33 Hz. Neurons with other morphologies were all uniaxonal. Some displayed spontaneous fast EPSPs or action potentials, three of forty‐one at +20 % stretch and seven of nineteen at +40 % stretch. In seven of eight Dogiel type II neurons, action potentials or proximal process potentials persisted when membrane hyperpolarization was imposed via the recording electrode. Action potential discharge was abolished by hyperpolarization in seven of nine uniaxonal neurons; the exceptions were two orally projecting neurons. Dogiel type II and uniaxonal neurons were classified as rapidly accommodating if they discharged action potentials only at the beginning of a 500 ms intracellular depolarizing pulse and slowly accommodating if they discharged for more than 250 ms. For Dogiel type II neurons, three of thirteen were slowly accommodating at +20 % stretch and two of four at 40 % stretch. For uniaxonal neurons the corresponding data were twelve of twenty‐six and fifteen of nineteen neurons. The slowly accommodating state was associated with increased cell input resistance in uniaxonal neurons. The spontaneous action potential discharge in Dogiel type II and uniaxonal neurons ceased when the muscle was relaxed pharmacologically by nicardipine (3 μM) or isoprenaline (1 μM), although the applied stretch was maintained. At the same time, evoked spike discharge became rapidly accommodating We conclude that many Dogiel type II neurons, and possibly some orally projecting uniaxonal neurons, are intrinsic, stretch‐sensitive, primary afferent neurons that respond to muscle tension with sustained action potential discharge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.