Simulations using density functional theory were carried out to investigate the defect properties of zirconium diboride (ZrB2) and also the solution and diffusion of He and Li. Schottky and Frenkel intrinsic defect processes were all high energy as were mechanisms giving rise to nonstoichiometry; this has implications for high‐temperature performance. Li and He species, formed by the transmutation of a 10B, should therefore mostly be accommodated at the resulting vacant B sites or interstitial sites. Because Li is considerably more stable at the vacant B sites, He will be accommodated interstitially. Furthermore, He was found to diffuse as an interstitial species through the lattice with a low activation energy. This would be consistent with He being lost from the ZrB2 but with Li being retained to a much greater extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.