The area under the time-dependent ROC curve (AUC) may be used to quantify the ability of a marker to predict the onset of a clinical outcome in the future. For survival analysis with competing risks, two alternative definitions of the specificity may be proposed depending of the way to deal with subjects who undergo the competing events. In this work, we propose nonparametric inverse probability of censoring weighting estimators of the AUC corresponding to these two definitions, and we study their asymptotic properties. We derive confidence intervals and test statistics for the equality of the AUCs obtained with two markers measured on the same subjects. A simulation study is performed to investigate the finite sample behaviour of the test and the confidence intervals. The method is applied to the French cohort PAQUID to compare the abilities of two psychometric tests to predict dementia onset in the elderly accounting for death without dementia competing risk. The 'timeROC' R package is provided to make the methodology easily usable.
CTC count is an independent and quantitative prognostic factor in early breast cancer patients treated by NCT. It complements current prognostic models based on tumor characteristics and response to therapy.
Summary. Thanks to the growing interest in personalized medicine, joint modeling of longitudinal marker and time-to-event data has recently started to be used to derive dynamic individual risk predictions. Individual predictions are called dynamic because they are updated when information on the subject's health profile grows with time. We focus in this work on statistical methods for quantifying and comparing dynamic predictive accuracy of this kind of prognostic models, accounting for right censoring and possibly competing events. Dynamic area under the ROC curve (AUC) and Brier Score (BS) are used to quantify predictive accuracy. Nonparametric inverse probability of censoring weighting is used to estimate dynamic curves of AUC and BS as functions of the time at which predictions are made. Asymptotic results are established and both pointwise confidence intervals and simultaneous confidence bands are derived. Tests are also proposed to compare the dynamic prediction accuracy curves of two prognostic models. The finite sample behavior of the inference procedures is assessed via simulations. We apply the proposed methodology to compare various prediction models using repeated measures of two psychometric tests to predict dementia in the elderly, accounting for the competing risk of death. Models are estimated on the French Paquid cohort and predictive accuracies are evaluated and compared on the French Three-City cohort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.