Comparison of the structures of these two enzymes has revealed one major difference: the structure of the hyperthermophilic enzyme contains a striking series of ion-pair networks on the surface of the protein subunits and buried at both interdomain and intersubunit interfaces. We propose that the formation of such extended networks may represent a major stabilizing feature associated with the adaptation of enzymes to extreme temperatures.
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most frequently diagnosed mitochondrial beta-oxidation defect, and it is potentially fatal. Eighty percent of patients are homozygous for a common mutation, 985A-->G, and a further 18% have this mutation in only one disease allele. In addition, a large number of rare disease-causing mutations have been identified and characterized. There is no clear genotype-phenotype correlation. High 985A-->G carrier frequencies in populations of European descent and the usual avoidance of recurrent disease episodes by patients diagnosed with MCAD deficiency who comply with a simple dietary treatment suggest that MCAD deficiency is a candidate in prospective screening of newborns. Therefore, several such screening programs employing analysis of acylcarnitines in blood spots by tandem mass spectrometry (MS/MS) are currently used worldwide. No validation of this method by mutation analysis has yet been reported. We investigated for MCAD mutations in newborns from US populations who had been identified by prospective MS/MS-based screening of 930,078 blood spots. An MCAD-deficiency frequency of 1/15,001 was observed. Our mutation analysis shows that the MS/MS-based method is excellent for detection of MCAD deficiency but that the frequency of the 985A-->G mutant allele in newborns with a positive acylcarnitine profile is much lower than that observed in clinically affected patients. Our identification of a new mutation, 199T-->C, which has never been observed in patients with clinically manifested disease but was present in a large proportion of the acylcarnitine-positive samples, may explain this skewed ratio. Overexpression experiments showed that this is a mild folding mutation that exhibits decreased levels of enzyme activity only under stringent conditions. A carrier frequency of 1/500 in the general population makes the 199T-->C mutation one of the three most prevalent mutations in the enzymes of fatty-acid oxidation.
The gene encoding the NAD +-dependent glutamate dehydrogenase (GDH) of Clostridium symbiosum was cloned using the polymerase chain reaction (PCR) because it could not be recovered by standard techniques. The nucleotide sequence of the gdh gene was determined and it was overexpressed from the controllable tac promoter in Escherichia coli so that active clostridial GDH represented 20% of total cell protein. The recombinant plasmid complemented the nutritional lesion of an E. coli glutamate auxotroph. There was a marked difference between the nucleotide compositions of the coding region (G + C = 52%) and the flanking sequences (G + C = 30% and 37%). The structural gene encoded a polypeptide of 450 amino acid residues and relative molecular mass (M,) 49 295 which corresponds to a single subunit of the hexameric enzyme. The DNA-derived amino acid sequence was consistent with a partial sequence from tryptic and cyanogen bromide peptides of the clostridial enzyme. The N-terminal amino acid sequence matched that of the purified protein, indicating that the initiating methionine is removed post-translationally, as in the natural host. The amino acid sequence is similar to those of other bacterial GDHs although it has a Gly-Xaa-Gly-XaaXaa-Ala motif in the NADf-binding domain, which is more typical of the NADPf-dependent enzymes. The sequence data now permit a detailed interpretation of the X-ray crystallographic structure of the enzyme and the cloning and expression of the clostridial gene will facilitate sitedirected mutagenesis.The NAD +-dependent glutamate dehydrogenase (GDH) of Clostridium symbiosum catalyses the first step in the hydroxyglutarate pathway of glutamate fermentation 11, 21. This anaerobe is an abundant source of GDH, which amounts to approximately 1 5 % of the total cell protein during growth with glutamate. The enzyme has been purified and extensively characterized (3 -51 and peptides representing about 75% of the primary structure have been sequenced 161. In addition, C. symbiosum GDH has been crystallized in a form suitable for high-resolution X-ray analysis and the structure has been solved to 0.196 nm [7-lo]. The cloning of the gdh gene and the determination of its nucleotide sequence are important for deducing the complete amino acid sequence of the enzyme, for permitting a full interpretation of the molecular structure and for designing site-directed mutagenesis experiments. Conventional approaches for cloning the gdh gene of C . symbiosum
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.