For nearly 100 million years, the India subcontinent drifted from Gondwana until its collision with Asia some 50 Ma, during which time the landmass presumably evolved a highly endemic biota. Recent excavations of rich outcrops of 50–52-million-year-old amber with diverse inclusions from the Cambay Shale of Gujarat, western India address this issue. Cambay amber occurs in lignitic and muddy sediments concentrated by near-shore chenier systems; its chemistry and the anatomy of associated fossil wood indicates a definitive source of Dipterocarpaceae. The amber is very partially polymerized and readily dissolves in organic solvents, thus allowing extraction of whole insects whose cuticle retains microscopic fidelity. Fourteen orders and more than 55 families and 100 species of arthropod inclusions have been discovered thus far, which have affinities to taxa from the Eocene of northern Europe, to the Recent of Australasia, and the Miocene to Recent of tropical America. Thus, India just prior to or immediately following contact shows little biological insularity. A significant diversity of eusocial insects are fossilized, including corbiculate bees, rhinotermitid termites, and modern subfamilies of ants (Formicidae), groups that apparently radiated during the contemporaneous Early Eocene Climatic Optimum or just prior to it during the Paleocene-Eocene Thermal Maximum. Cambay amber preserves a uniquely diverse and early biota of a modern-type of broad-leaf tropical forest, revealing 50 Ma of stasis and change in biological communities of the dipterocarp primary forests that dominate southeastern Asia today.
Amber is of great paleontological importance because it preserves a diverse array of organisms and associated remains from different habitats in and close to the amber-producing forests. Therefore, the discovery of amber inclusions is important not only for tracing the evolutionary history of lineages with otherwise poor fossil records, but also for elucidating the composition, diversity, and ecology of terrestrial paleoecosystems. Here, we report a unique find of African amber with inclusions, from the Cretaceous of Ethiopia. Ancient arthropods belonging to the ants, wasps, thrips, zorapterans, and spiders are the earliest African records of these ecologically important groups and constitute significant discoveries providing insight into the temporal and geographical origins of these lineages. Together with diverse microscopic inclusions, these findings reveal the interactions of plants, fungi and arthropods during an epoch of major change in terrestrial ecosystems, which was caused by the initial radiation of the angiosperms. Because of its age, paleogeographic location and the exceptional preservation of the inclusions, this fossil resin broadens our understanding of the ecology of Cretaceous woodlands.Arachnida | Ethiopia | Hexapoda | microorganisms | paleoecology
The occurrence of arthropods in amber exclusively from the Cretaceous and Cenozoic is widely regarded to be a result of the production and preservation of large amounts of tree resin beginning ca. 130 million years (Ma) ago. Abundant 230 million-year-old amber from the Late Triassic (Carnian) of northeastern Italy has previously yielded myriad microorganisms, but we report here that it also preserves arthropods some 100 Ma older than the earliest prior records in amber. The Triassic specimens are a nematoceran fly (Diptera) and two disparate species of mites, Triasacarus fedelei gen. et sp. nov., and Ampezzoa triassica gen. et sp. nov. These mites are the oldest definitive fossils of a group, the Eriophyoidea, which includes the gall mites and comprises at least 3,500 Recent species, 97% of which feed on angiosperms and represents one of the most specialized lineages of phytophagous arthropods. Antiquity of the gall mites in much their extant form was unexpected, particularly with the Triassic species already having many of their present-day features (such as only two pairs of legs); further, it establishes conifer feeding as an ancestral trait. Feeding by the fossil mites may have contributed to the formation of the amber droplets, but we find that the abundance of amber during the Carnian ( ca. 230 Ma) is globally anomalous for the pre-Cretaceous and may, alternatively, be related to paleoclimate. Further recovery of arthropods in Carnian-aged amber is promising and will have profound implications for understanding the evolution of terrestrial members of the most diverse phylum of organisms.
Ticks are currently among the most prevalent blood-feeding ectoparasites, but their feeding habits and hosts in deep time have long remained speculative. Here, we report direct and indirect evidence in 99 million-year-old Cretaceous amber showing that hard ticks and ticks of the extinct new family Deinocrotonidae fed on blood from feathered dinosaurs, non-avialan or avialan excluding crown-group birds. A †Cornupalpatum burmanicum hard tick is entangled in a pennaceous feather. Two deinocrotonids described as †Deinocroton draculi gen. et sp. nov. have specialised setae from dermestid beetle larvae (hastisetae) attached to their bodies, likely indicating cohabitation in a feathered dinosaur nest. A third conspecific specimen is blood-engorged, its anatomical features suggesting that deinocrotonids fed rapidly to engorgement and had multiple gonotrophic cycles. These findings provide insight into early tick evolution and ecology, and shed light on poorly known arthropod–vertebrate interactions and potential disease transmission during the Mesozoic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.