A detailed study on the optical cavity modes of zinc oxide microspheres under the optical excitation is presented. The zinc oxide microspheres with diameters ranging from 1.5 to 3.0 µm are prepared using hydrothermal growth technique. The photoluminescence measurement of a single microsphere shows prominent resonances of whispering gallery modes at room temperature. The experimentally observed whispering gallery modes in the photoluminescence spectrum are compared with theoretical calculations using analytical and finite element methods in order to clarify resonance properties of these modes. The comparison between theoretical analysis and experiment suggests that the dielectric constant of the ZnO microsphere is somewhat different from that for bulk ZnO. The sharp resonances of whispering gallery modes in zinc oxide microspheres cover the entire visible window. They may be utilized in realizations of optical resonators, light emitting devices, and lasers for future chip integrations with micro/nano optoelectronic circuits, and developments of optical biosensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.