Zika virus (ZIKV) is an emerging human pathogen that is spreading rapidly through the Americas and has been linked to the development of microcephaly and to a dramatically increased number of Guillain-Barré syndrome cases. Currently, no vaccine or therapeutic options for the prevention or treatment of ZIKV infections exist. In the study described in this report, we expressed, purified, and characterized full-length nonstructural protein 5 (NS5) and the NS5 polymerase domain (NS5pol) of ZIKV RNA-dependent RNA polymerase. Using purified NS5, we developed an in vitro nonradioactive primer extension assay employing a fluorescently labeled primertemplate pair. Both purified NS5 and NS5pol can carry out in vitro RNA-dependent RNA synthesis in this assay. Our results show that Mn 2ϩ is required for enzymatic activity, while Mg 2ϩ is not. We found that ZIKV NS5 can utilize single-stranded DNA but not double-stranded DNA as a template or a primer to synthesize RNA. The assay was used to compare the efficiency of incorporation of analog 5=-triphosphates by the ZIKV polymerase and to calculate their discrimination versus that of natural ribonucleotide triphosphates (rNTPs). The 50% inhibitory concentrations for analog rNTPs were determined in an alternative nonradioactive coupled-enzyme assay. We determined that, in general, 2=-C-methyl-and 2=-C-ethynyl-substituted analog 5=-triphosphates were efficiently incorporated by the ZIKV polymerase and were also efficient chain terminators. Derivatives of these molecules may serve as potential antiviral compounds to be developed to combat ZIKV infection. This report provides the first characterization of ZIKV polymerase and demonstrates the utility of in vitro polymerase assays in the identification of potential ZIKV inhibitors.
There is a growing body of evidence suggesting that some ribonucleoside/ribonucleotide analogs may be incorporated into mitochondrial RNA by human mitochondrial DNA-dependent RNA polymerase (POLRMT) and disrupt mitochondrial RNA synthesis. An assessment of the incorporation efficiency of a ribonucleotide analog 5′-triphosphate by POLRMT may be used to evaluate the potential mitochondrial toxicity of the analog early in the development process. In this report, we provide a simple method to prepare active recombinant POLRMT. A robust in vitro nonradioactive primer extension assay was developed to assay the incorporation efficiency of ribonucleotide analog 5′-triphosphates. Our results show that many ribonucleotide analogs, including some antiviral compounds currently in various preclinical or clinical development stages, can be incorporated into newly synthesized RNA by POLRMT and that the incorporation of some of them can lead to chain termination. The discrimination (D) values of ribonucleotide analog 5′-triphosphates over those of natural ribonucleotide triphosphates (rNTPs) were measured to evaluate the incorporation efficiency of the ribonucleotide analog 5′-triphosphates by POLRMT. The discrimination values of natural rNTPs under the condition of misincorporation by POLRMT were used as a reference to evaluate the potential mitochondrial toxicity of ribonucleotide analogs. We propose the following criteria for the potential mitochondrial toxicity of ribonucleotide analogs based on D values: a safe compound has a D value of >105; a potentially toxic compound has a D value of >104 but <105; and a toxic compound has a D value of <104. This report provides a simple screening method that should assist investigators in designing ribonucleoside-based drugs having lower mitochondrial toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.