Traditionally, the automatic recognition of human activities is performed with supervised learning algorithms on limited sets of specific activities. This work proposes to recognize recurrent activity patterns, called routines, instead of precisely defined activities. The modeling of routines is defined as a metric learning problem, and an architecture, called SS2S, based on sequence-to-sequence models is proposed to learn a distance between time series. This approach only relies on inertial data and is thus non intrusive and preserves privacy. Experimental results show that a clustering algorithm provided with the learned distance is able to recover daily routines.
Activities of Daily Living (ADL) classification is a key part of assisted living systems as it can be used to assess a person autonomy. We present in this paper an activity classification pipeline using Gated Recurrent Units (GRU) and inertial sequences. We aim to take advantage of the feature extraction properties of neural networks to free ourselves from defining rules or manually choosing features. We also investigate the advantages of resampling input sequences and personalizing GRU models to improve the performances. We evaluate our models on two datasets: a dataset containing five common postures: sitting, lying, standing, walking and transfer and a dataset named MobiAct V2 providing ADL and falls. Results show that the proposed approach could benefit eHealth services and particularly activity monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.