The search for unconventional superconductivity has been focused on materials with strong spin-orbit coupling and unique crystal lattices. Doped bismuth selenide (Bi 2 Se 3 ) is a strong candidate, given the topological insulator nature of the parent compound and its triangular lattice. The coupling between the physical properties in the superconducting state and its underlying crystal symmetry is a crucial test for unconventional superconductivity. In this paper, we report direct evidence that the superconducting magnetic response couples strongly to the underlying trigonal crystal symmetry in the recently discovered superconductor with trigonal crystal structure, niobium (Nb)-doped Bi 2 Se 3 . As a result, the in-plane magnetic torque signal vanishes every 60°. More importantly, the superconducting hysteresis loop amplitude is enhanced along one preferred direction, spontaneously breaking the rotational symmetry. This observation indicates the presence of nematic order in the superconducting ground state of Nb-doped Bi 2 Se 3 .
Topological insulator Bi2Se3 has shown a number of interesting physical properties. Doping Bi2Se3 with copper (Cu) or strontium (Sr) has been demonstrated to make the material superconducting and potentially even a topological superconductor. The recent discovery of superconducting niobium (Nb) doped Bi2Se3 reveals an exciting new physical phenomenon, the coexistence of superconductivity and magnetic ordering, as well as signatures of an odd-parity p-wave superconducting order. To understand this new phenomenon, a detailed knowledge of the electronic structure is needed. To date, the quantum oscillations needed to reveal this structure have not been reported in Nb-doped Bi2Se3. In this rapid communication, we present the first observation of quantum oscillations in the magnetization (the de Haas-van Alphen effect) of Nb-doped Bi2Se3. In the fully superconducting crystal, two distinct orbits are observed, in sharp contrast to Bi2Se3, Cu-doped Bi2Se3, and Sr-doped Bi2Se3. The multiple frequencies observed in our quantum oscillations, combined with our electrical transport studies, indicate the multi-orbit nature of the electronic state of Nb-doped Bi2Se3.
Young women in sub-Saharan Africa are disproportionally affected by HIV infection and unintended pregnancies. However, hormonal contraceptive (HC) use may influence HIV risk through changes in genital tract microbiota and inflammatory cytokines. To investigate this, 130 HIV negative adolescent females aged 15-19 years were enrolled into a substudy of UChoose, an open-label randomized crossover study (NCT02404038), comparing acceptability and contraceptive product preference as a proxy for HIV prevention delivery methods. Participants were randomized to injectable norethisterone enanthate (Net-En), combined oral contraceptives (COC) or etonorgesterol/ethinyl estradiol combined contraceptive vaginal ring (CCVR) for 16 weeks, then crossed over to another HC for 16 weeks. Cervicovaginal samples were collected at baseline, crossover and exit for characterization of the microbiota and measurement of cytokine levels; primary endpoints were cervical T cell activation, vaginal microbial diversity and cytokine concentrations. Adolescents randomized to COCs had lower vaginal microbial diversity and relative abundance of HIV risk-associated taxa compared to Net-En or CCVR. Cervicovaginal inflammatory cytokine concentrations were significantly higher in adolescents randomized to CCVR compared to COC and Net-En. This suggests that COC use may induce an optimal vaginal ecosystem by decreasing bacterial diversity and inflammatory taxa, while CCVR use is associated with genital inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.