Internet of Things (IoT) is gaining more attention from last few decades. Nowadays, people are moving towards the IoT based systems for living their life luxuriously. Adoption of IoT in the field of healthcare sector is noticeable. Real time monitoring of patient is possible in better way using this technique. Due to integration of IoT, the quality of services in healthcare field is surpasses. Most of the time due to improper monitoring of patient's body parameters causes hazardous effects on patient's health. In this paper, we discuss the IoT based remote monitoring of patient. The aim here is to get proper and timely treatment to the patient, when any of the health parameters crosses its set limits. The abnormal condition of patient is informed to his physician, care taker and family members by sending message about abnormal health parameter. So that patient can be treated well in time.
Aim: The need for predictive and prognostic biomarkers in colorectal carcinoma (CRC) brought us to an era where the use of artificial intelligence (AI) models is increasing. We investigated the expression of Claudin-7, a tight junction component, which plays a crucial role in maintaining the integrity of normal epithelial mucosa, and its potential prognostic role in advanced CRCs, by drawing a parallel between statistical and AI algorithms. Methods: Claudin-7 immunohistochemical expression was evaluated in the tumor core and invasion front of CRCs from 84 patients and correlated with clinicopathological parameters and survival. The results were compared with those obtained by using various AI algorithms. Results: the Kaplan–Meier univariate survival analysis showed a significant correlation between survival and Claudin-7 intensity in the invasive front (p = 0.00), a higher expression being associated with a worse prognosis, while Claudin-7 intensity in the tumor core had no impact on survival. In contrast, AI models could not predict the same outcome on survival. Conclusion: The study showed through statistical means that the immunohistochemical overexpression of Claudin-7 in the tumor invasive front may represent a poor prognostic factor in advanced stages of CRCs, contrary to AI models which could not predict the same outcome, probably because of the small number of patients included in our cohort.
Colorectal cancer is a major cause of cancer-related death worldwide and is correlated with genetic and epigenetic alterations in the colonic epithelium. Genetic changes play a major role in the pathophysiology of colorectal cancer through the development of gene mutations, but recent research has shown an important role for epigenetic alterations. In this review, we try to describe the current knowledge about epigenetic alterations, including DNA methylation and histone modifications, as well as the role of non-coding RNAs as epigenetic regulators and the prognostic and predictive biomarkers in metastatic colorectal disease that can allow increases in the effectiveness of treatments. Additionally, the intestinal microbiota’s composition can be an important biomarker for the response to strategies based on the immunotherapy of CRC. The identification of biomarkers in mCRC can be enhanced by developing artificial intelligence programs. We present the actual models that implement AI technology as a bridge connecting ncRNAs with tumors and conducted some experiments to improve the quality of the model used as well as the speed of the model that provides answers to users. In order to carry out this task, we implemented six algorithms: the naive Bayes classifier, the random forest classifier, the decision tree classifier, gradient boosted trees, logistic regression and SVM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.