Although the integration of sustainability, ecology, and design has been recognized as necessary by scientists and practitioners, most transdisciplinary frameworks are not inclusive of the worldviews, paradigms, aims, processes, and components necessary for sustainability. Landscape sustainability science helps to focus scientist, scholar, practitioner, and stakeholder efforts toward sustainability at a pivotal level; however, collaboration and progress have been slow. Significant potential exists for design to be an integrative and transformational methodology toward landscape sustainability, yet it has not fulfilled this ambitious role. In this paper, we first build a case for regenerative development, a development and design methodology based on an ecological worldview, as an integrative platform for a new paradigm. This new paradigm, which we call regenerative landscape development, has the potential to thoroughly catalyze a shift toward regenerative sustainability. We then detail this new paradigm as a process that could continually enhance the capacities of living systems to increase health, well-being, and happiness. Next, to illustrate regenerative development in practice, we provide brief case studies of projects in Viña del Mar, Chile and Juluchuca, Guerrero, Mexico. Finally, we propose future recommendations and precautions in the construction of regenerative landscape development as a new paradigm. If fully understood, embraced, and realized, regenerative development holds incredible potential for a sustainable future.
Cities increasingly recognize the importance of shade to reduce heat stress and adopt urban forestry plans with ambitious canopy goals. Yet, the implementation of tree and shade plans often faces maintenance, water use, and infrastructure challenges. Understanding the performance of natural and non-natural shade is critical to support active shade management in the built environment. We conducted hourly transects in Tempe, Arizona with the mobile human-biometeorological station MaRTy on hot summer days to quantify the efficacy of various shade types. We sampled sun-exposed reference locations and shade types grouped by urban form, lightweight/engineered shade, and tree species over multiple ground surfaces. We investigated shade performance during the day, at peak incoming solar, peak air temperature, and after sunset using three thermal metrics: the difference between a shaded and sun-exposed location in air temperature (ΔTa), surface temperature (ΔTs), and mean radiant temperature (ΔTMRT). ΔTa did not vary significantly between shade groups, but ΔTMRT spanned a 50°C range across observations. At daytime, shade from urban form most effectively reduced Ts and TMRT, followed by trees and lightweight structures. Shade from urban form performed differently with changing orientation. Tree shade performance varied widely; native and palm trees were least effective, while non-native trees were most effective. All shade types exhibited heat retention (positive ΔTMRT) after sunset. Based on the observations, we developed characteristic shade performance curves that will inform the City of Tempe’s design guidelines towards using “the right shade in the right place” and form the basis for the development of microclimate zones (MCSz).
Quantifying ecosystem services in urban areas is complex. However, existing ecosystem service typologies and ecosystem modeling can provide a means towards understanding some key biophysical links between urban forests and ecosystem services. This project addresses broader concepts of sustainability by assessing the urban park system in Phoenix, Arizona’s hot urban climate. This project aims to quantify and demonstrate the multiple ecosystem services provided by Phoenix’s green infrastructure (i.e., urban park system), including its air pollution removal values, carbon sequestration and storage, avoided runoff, structural value, and the energy savings it provides for city residents. Modeling of ecosystem services of the urban park system revealed around 517,000 trees within the system, representing a 7.20% tree cover. These trees remove about 3630 tons (t) of carbon (at an associated value of $285,000) and about 272 t of air pollutants (at an associated value of $1.16 million) every year. Trees within Phoenix’s urban park system are estimated to reduce annual residential energy costs by $106,000 and their structural value is estimated at $692 million. The findings of this research will increase our knowledge of the value of green infrastructure services provided by different types of urban vegetation and assist in the future design, planning and management of green infrastructure in cities. Thus, this study has implications for both policy and practice, contributing to a better understanding of the multiple benefits of green infrastructure and improving the design of green spaces in hot arid urban climates around the globe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.