Unaccustomed eccentric (ECC) exercise induces muscle fatigue as well as damage and initiates a protective response to minimize impairments from a subsequent bout (i.e., repeated bout effect; RBE). It is uncertain if the sexes differ for neuromuscular responses to ECC exercise and the ensuing RBE. Twenty-six young adults (13 females) performed two bouts (four weeks apart) of 200 ECC maximal voluntary contractions (MVCs) of the dorsiflexors. Isometric (ISO) MVC torque and the ratio of ISO torque in response to low- vs. high-frequency stimulation (10:100Hz) were compared before and after (2-10min and 2, 4, and 7d) exercise. The decline in ECC and ISO MVC torque, and the 10:100Hz ratio following bout one did not differ between sexes (P > 0.05), with reductions from baseline of 31.5 ± 12.3, 24.1 ± 15.4, and 51.3 ± 12.2%, respectively. After bout two, the 10:100Hz ratio declined less (45.0 ± 12.4% from baseline) and ISO MVC torque recovered sooner compared to bout one but no differences between sexes were evident for the magnitude of the RBE (P > 0.05). These data suggest that fatigability with ECC exercise does not differ for the sexes and adaptations that mitigate impairments to calcium handling are independent of sex.
NOVELTY BULLETS:
• One bout of 200 maximal eccentric dorsiflexor contractions caused equivalent muscle fatigue and damage for females and males
• The repeated bout effect observed after a second bout four weeks later also had no sex-related differences
• Prolonged low-frequency force depression is promoted as an indirect measure of muscle damage in humans
Prolonged low-frequency force depression (PLFFD) after damaging eccentric exercise may last for several days. Historically, PLFFD has been calculated from the tetanic force responses to trains of supramaximal stimuli. More recently, for methodological reasons, stimulation has been reduced to two pulses. However, it is unknown whether doublet responses provide a valid measure of PLFFD in the days after eccentric exercise. In 12 participants, doublets and tetani were elicited at 10 and 100 Hz before and after (2, 3, 5 min, 48 and 96 h) 200 eccentric maximal voluntary contractions of the dorsiflexors. Doublet and tetanic torque responses at 10 Hz were similarly depressed throughout recovery ( P > 0.05; e.g., 2 min: 58.9 ± 12.8% vs. 57.1 ± 14.5% baseline; 96 h: 85.6 ± 11.04% vs. 85.1 ± 10.8% baseline). At 100 Hz, doublet torque was impaired more than tetanic torque at all time points ( P < 0.05; e.g., 2 min: 70.5 ± 14.2% vs. 88.1 ± 11.7% baseline; 96 h: 83.0 ± 14.2% vs. 98.7 ± 9.5% baseline). As a result, the postfatigue reduction of the 10 Hz-to-100 Hz ratio (PLFFD) was markedly greater for tetani than for doublets ( P < 0.05; e.g., 2 min: 64.3 ± 15.1% vs. 83.0 ± 5.8% baseline). In addition, the doublet ratio recovered by 48 h (99.2 ± 5.0% baseline), whereas the tetanic ratio was still impaired at 96 h (88.2 ± 9.7% baseline). Our results indicate that doublets are not a valid measure of PLFFD in the minutes and days after eccentric exercise. If study design favors the use of paired stimuli, it should be acknowledged that the true magnitude and duration of PLFFD are likely underestimated. NEW & NOTEWORTHY Prolonged low-frequency force depression (PLFFD) will result from damaging exercise and may last for several days. After 200 eccentric maximal dorsiflexor contractions, we compared the gold-standard measure of PLFFD (calculated using trains of supramaximal stimulation) to the value obtained from an alternative technique that is becoming increasingly common (paired supramaximal stimuli). Doublets underestimated the magnitude and duration of PLFFD compared with tetani, so caution must be used when reporting PLFFD derived from paired stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.