Three bis-benzoxazine monomers based on the aniline derivatives of bisphenol A (BA-a), bisphenol F (BF-a), and 3,3′-thiodiphenol (BT-a) are examined using a variety of spectroscopic, chromatographic, and thermomechanical techniques. The effect on the polymerization of the monomers is compared using two common compounds, 3,3′-thiodiphenol (TDP) and 3,3′-thiodipropionic acid (TDA), at a variety of loadings. It is found that the diacid has a greater effect on reducing the onset of polymerization and increasing cross-link density and Tg for a given benzoxazine. However, the addition of >5 wt % of the diacid had a detrimental effect on the cross-link density, Tg, and thermal stability of the polymer. The kinetics of the polymerization of BA-a were found to be well described using an autocatalytic model for which values of n = 1.64 and m = 2.31 were obtained for the early and later stages of reaction (activation energy = 81 kJ/mol). Following recrystallization the same monomer yielded values n = 1.89, m = 0.89, and Ea = 94 kJ/mol (confirming the influence of higher oligomers on reactivity). The choice of additive (in particular the magnitude of its pKa) appears to influence the nature of the network formation from a linear toward a more clusterlike growth mechanism.
Crystalline aromatic poly(ether ketone)s such as PEEK and PEK may be cleanly and reversibly derivatized by dithioketalization of the carbonyl groups with 1,2-ethanedithiol or 1,3-propanedithiol under strong acid conditions. The resulting 1,3-dithiolane and 1,3-dithiane polymers are hydrolytically stable, amorphous, and readily soluble in organic solvents such as chloroform and THF and are thus (unlike their parent polymers) easily characterized by gel permeation chromatography (GPC). GPC analysis of a range of derivatized PEEK samples using light-scattering detection revealed, in some instances, a bimodal molecular weight distribution with a small but potentially significant (and previously undetected) very high-molecular-weight fraction.
B i s ( 3 , 4 -d i h y d r o -3 -p h e n y l -2 H -1 , 3benzoxazine)propane (BA-a) is blended with oligomers of polyarylsulfone (PSU) and polyarylethersulfone (PES) of different low/intermediate molecular weights (3000−12 000 g mol −1 ) and terminal functionality (chloro-, hydroxyl-or benzoxazinyl-(Bz)). Fracture toughness (K IC ) is observed to increase from 0.8 MPa m 0.5 for cured BA-a to 1 MPa m 0.5 with the incorporation of 10 wt % PSU-Bz (12 000 g mol −1 ). Generally, greater improvements in K IC are observed for the PES oligomers compared with the PSU oligomers of equivalent molecular weight. The terminal functionality of the thermoplastic has a lesser effect on improving toughness than increasing the molecular weight or the nature of the polymer backbone. Surface analysis of the fractured surfaces show greater phase separation and crack pinning in the PES toughened system. Where crack pinning is less obvious, as in the case of hydroxyl-terminated PES (of 6000 g mol −1 ), this coincides with a drop in fracture toughness.
Article Accepted Version Manolakis, I., Cross, P. and Colquhoun, H. (2017) Exchange reactions of poly(arylene ether ketone) dithioketals with aliphatic diols: formation and deprotection of poly(arylene ether ketal)s. Macromolecules, 50 (24). pp. 95619568. ISSN 00249297 Short title: Exchange reactions of poly(arylene ether ketone) dithioketals with diols ABSTRACT: The dithioketal derivatives of industrially important, semi-crystalline poly(arylene ether ketone)s undergo facile exchange with aliphatic diols in the presence of N-bromosuccinimide to give a range of novel poly(arylene ether ketal)s. These are amorphous and readily soluble in a wide range of organic solvents. Although generally stable under ambient conditions, they undergo rapid and quantitative hydrolysis in the presence of acids to regenerate the original polyketones. The poly(ether ketal)s reported here are not accessible from ketal-type monomers, nor can they be obtained by direct reaction of poly(ether ketone)s with aliphatic diols. The starting polyketones are essentially unchanged after sequential dithioketalization, dithioketalketal exchange, ketal hydrolysis, and re-dithioketalization. Poly(arylene ether ketal)s provide a new approach to the processing of poly(arylene ether ketone)s into carbon fiber composite materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.