Drug-induced liver injury (DILI) accounts for 20-40% of all instances of clinical hepatic failure and is a common reason for withdrawal of an approved drug or discontinuation of a potentially new drug from clinical/nonclinical development. Numerous individual risk factors contribute to the susceptibility to human DILI and its severity that are either compound-and/or patient-specific. Compound-specific primary mechanisms linked to DILI include: cytotoxicity, reactive metabolite formation, inhibition of bile salt export pump (BSEP), and mitochondrial dysfunction. Since BSEP is an energydependent protein responsible for the efflux of bile acids from hepatocytes, it was hypothesized that humans exposed to drugs that impair both mitochondrial energetics and BSEP functional activity are more sensitive to more severe manifestations of DILI than drugs that only have a single liability factor. As annotated in the United States National Center for Toxicological Research Liver Toxicity Knowledge Base (NCTR-LTKB), the inhibitory properties of 24 Most-DILI-, 28 Less-DILI-, and 20 No-DILIconcern drugs were investigated. Drug potency for inhibiting BSEP or mitochondrial activity was generally correlated across human DILI concern categories. However, drugs with dual potency as mitochondrial and BSEP inhibitors were highly associated with more severe human DILI, more restrictive product safety labeling related to liver injury, and appear more sensitive to the drug exposure (Cmax) where more restrictive labeling occurs. Conclusion: These data affirm that severe manifestations of human DILI are multifactorial, highly associated with combinations of drug potency specifically related to known mechanisms of DILI (like mitochondrial and BSEP inhibition), and, along with patient-specific factors, lead to differences in the severity and exposure thresholds associated with clinical DILI. (HEPATOLOGY 2014;60:1015-1022
A critical component of innate immune response to infection and tissue damage is the NACHT, LRR, and PYD domains–containing protein 3 (NLRP3) inflammasome, and this pathway and its activation products have been implicated in the pathophysiology of a variety of diseases. NLRP3 inflammasome activation leads to the cleavage of pro–IL-1β and pro–IL-18, as well as the subsequent release of biologically active IL-1β, IL-18, and other soluble mediators of inflammation. In this study, we further define the pharmacology of the previously reported NLRP3 inflammasome–selective, IL-1β processing inhibitor CP-456,773 (also known as MCC950), and we demonstrate its efficacy in two in vivo models of inflammation. Specifically, we show that in human and mouse innate immune cells CP-456,773 is an inhibitor of the cellular release of IL-1β, IL-1α, and IL-18, that CP-456,773 prevents inflammasome activation induced by disease-relevant soluble and crystalline NLRP3 stimuli, and that CP-456,773 inhibits R848- and imiquimod-induced IL-1β release. In mice, CP-456,773 demonstrates potent inhibition of the release of proinflammatory cytokines following acute i.p. challenge with LPS plus ATP in a manner that is proportional to the free/unbound concentrations of the drug, thereby establishing an in vivo pharmacokinetic/pharmacodynamic model for CP-456,773. Furthermore, CP-456,773 reduces ear swelling in an imiquimod cream–induced mouse model of skin inflammation, and it reduces airway inflammation in mice following acute challenge with house dust mite extract. These data implicate the NLRP3 inflammasome in the pathogenesis of dermal and airway inflammation, and they highlight the utility of CP-456,773 for interrogating the contribution of the NLRP3 inflammasome and its outputs in preclinical models of inflammation and disease.
Alanine-serine-cysteine transporter 2 (ASCT2, SLC1A5) is the primary transporter of glutamine in cancer cells and regulates the mTORC1 signaling pathway. The SLC1A5 function involves finely tuned orchestration of two domain movements that include the substrate-binding transport domain and the scaffold domain. Here, we present cryo-EM structures of human SLC1A5 and its complex with the substrate, L-glutamine in an outward-facing conformation. These structures reveal insights into the conformation of the critical ECL2a loop which connects the two domains, thus allowing rigid body movement of the transport domain throughout the transport cycle. Furthermore, the structures provide new insights into substrate recognition, which involves conformational changes in the HP2 loop. A putative cholesterol binding site was observed near the domain interface in the outward-facing state. Comparison with the previously determined inward-facing structure of SCL1A5 provides a basis for a more integrated understanding of substrate recognition and transport mechanism in the SLC1 family.
IgG and IgM antibody specificities for antigens of Treponema pallidum Nichols strain were determined by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the western blot technique in sera from patients with untreated syphilis, normal persons, persons with biologic false-positive tests for syphilis, and sexual contacts of persons with infectious syphilis. IgG reactivities of sera from individuals with primary syphilis varied considerably but consistently exhibited strong reactivity to a 48-kilodalton band. Sera from patients with secondary and early latent syphilis uniformly demonstrated reactivity to 22 separate polypeptide antigens; decreased reactivity was seen in late latent syphilis. Normal and biologic false-positive sera showed weak IgG reactivity against none to 12 polypeptides. Sera from asymptomatic contacts of persons with infectious syphilis showed reactivity to a varying number of treponemal antigens, including some reactions not seen with normal sera. IgM reactivity was most prominent in secondary syphilis but was demonstrable at all stages of disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.